Vitamin B-12 Associated Neurological Diseases

Back

Background

The association of anemia and gastrointestinal and neurologic abnormalities referable to the brain, spinal cord, and peripheral nerves has been recognized in several clinical and postmortem case reports and series by Combe, Addison, and Fenwick since the early 19th century. In 1877, Gardner and Osler coined the term pernicious anemia (PA) to describe a patient with progressive arm numbness and difficulty with buttoning and using tools.[1] Liechtenstein in 1884 reported the association of PA and spinal cord disease but attributed both to tabes dorsalis.[2] Lichtheim in 1887[3] and Minnich in 1892[4] recognized the histologic differences in the spinal cord between PA and tabes dorsalis.

In 1900, Russell et al coined the term subacute combined degeneration of the spinal cord.[5] In 1926, Minot and Murphy fed PA patients a half-pound of calf liver daily, for which they received the Nobel Prize.[6] In 1929, Castle distinguished the role of gastric (intrinsic) and dietary (extrinsic) factors in PA.[7] In 1948, cyanocobalamin was isolated from the liver. The existence of vitamin B-12 deficiency neuropathy was recognized in 1958. In 1955, Lassen et al[8] noted megaloblastic anemia secondary to prolonged nitrous oxide (N2 O) exposure; the neurologic features were described in 1978 by Sahenk et al[9] and Layzer et al.[10]

See the image below.



View Image

Vitamin B-12–associated neurological diseases. Pernicious anemia. Characteristic lemon-yellow pallor with raw beef tongue lacking filiform papillae. P....

See 21 Hidden Clues to Diagnosing Nutritional Deficiencies, a Critical Images slideshow, to help identify clues to conditions associated with malnutrition.

Pathophysiology

Vitamin B-12 structure

Vitamin B-12 (cobalamin) is a complex molecule in which a cobalt atom is contained in a corrin ring. Vitamin B-12 is available in animal protein.

Body stores

Total body stores are 2-5 mg, of which half is stored in the liver. The recommended daily intake is 2 mcg/d in adults; pregnant and lactating women require 2.6 mcg/d. Children require 0.7 mcg/d and, in adolescence, 2 mcg/d. Because vitamin B-12 is highly conserved through the enterohepatic circulation, cobalamin deficiency from malabsorption develops after 2-5 years and deficiency from dietary inadequacy in vegetarians develops after 10-20 years. Its causes are mainly nutritional and malabsorptive, PA being most common.

Physiology of absorption

After ingestion, the low stomach pH cleaves cobalamin from other dietary protein.[11] The free cobalamin binds to gastric R binder, a glycoprotein in saliva, and the complex travels to the duodenum and jejunum, where pancreatic peptidases digest the complex and release cobalamin. Free cobalamin can then bind with gastric intrinsic factor (IF), a 50-kd glycoprotein produced by the gastric parietal cells, the secretion of which parallels that of hydrochloric acid. Hence, in states of achlorhydria, IF secretion is reduced, leading to cobalamin deficiency. Importantly, only 99% of ingested cobalamin requires IF for absorption. Up to 1% of free cobalamin is absorbed passively in the terminal ileum. This why oral replacement with large vitamin B-12 doses is appropriate for PA.

Once bound with IF, vitamin B-12 is resistant to further digestion. The complex travels to the distal ileum and binds to a specific mucosal brush border receptor, cublin, which facilitates the internalization of cobalamin-IF complex in an energy-dependent process. Once internalized, IF is removed and cobalamin is transferred to other transport proteins, transcobalamin I, II, and III (TCI, TCII, TCIII). Eighty percent of cobalamin is bound to TCI/III, whose role in cobalamin metabolism is unknown. The other 20% binds with TCII, the physiologic transport protein produced by endothelial cells. Its half-life is 6-9 min, thus delivery to target tissues is rapid.

The cobalamin-TCII complex is secreted into the portal blood where it is taken up mainly in the liver and bone marrow as well as other tissues. Once in the cytoplasm, cobalamin is liberated from the complex by lysosomal degradation. An enzyme-mediated reduction of the cobalt occurs by cytoplasmic methylation to form methylcobalamin or by mitochondrial adenosylation to form adenosylcobalamin, the 2 metabolically active forms of cobalamin.

Vitamin B-12 role in bone marrow function

In the cytoplasm, methylcobalamin (see image below) serves as cofactor for methionine synthesis by allowing transfer of a methyl group from 5-methyl-tetrahydrofolate (5-methyl-THF) to homocysteine (HC), forming methionine and demethylated tetrahydrofolate (THF). This results in reduction in serum homocysteine, which appears to be toxic to endothelial cells. Methionine is further metabolized to S-adenosylmethionine (SAM).



View Image

Vitamin B-12–associated neurological diseases. Cobalamin and folate metabolism. TS = thymidylate synthase, DHFR = dihydrofolate reductase, SHMT = seri....

THF is used for DNA synthesis. After conversion to its polyglutamate form, THF participates in purine synthesis and the conversion of deoxyuridylate (dUTP) to deoxythymidine monophosphate (dTMP), which is then phosphorylated to deoxythymidine triphosphate (dTTP). dTTP is required for DNA synthesis; therefore, in vitamin B-12 deficiency, formation of dTTP and accumulation of 5-methyl-THF is inadequate, trapping folate in its unusable form and leading to retarded DNA synthesis. RNA contains dUTP (deoxyuracil triphosphate) instead of dTTP, allowing for protein synthesis to proceed uninterrupted and resulting in macrocytosis and cytonuclear dissociation.

Because folate deficiency causes macrocytosis and cytonuclear dissociation via the same mechanisms, both deficiencies lead to megaloblastic anemia and disordered maturation in granulocytic lineages; therefore, folate supplementation can reverse the hematologic abnormalities of vitamin B-12 deficiency but has no impact on the neurologic abnormalities of vitamin B-12 deficiency, indicating both result from different mechanisms.

Vitamin B-12 role in the peripheral and central nervous systems

The neurologic manifestation of cobalamin deficiency is less well understood. CNS demyelination may play a role, but how cobalamin deficiency leads to demyelination remains unclear. Reduced SAM or elevated methylmalonic acid (MMA) may be involved.

SAM is required as the methyl donor in polyamine synthesis and transmethylation reactions. Methylation reactions are needed for myelin maintenance and synthesis. SAM deficiency results in abnormal methylated phospholipids such as phosphatidylcholine, and it is linked to central myelin defects and abnormal neuronal conduction, which may account for the encephalopathy and myelopathy. In addition, SAM influences serotonin, norepinephrine, and dopamine synthesis. This suggests that, in addition to structural consequences of vitamin B-12 deficiency, functional effects on neurotransmitter synthesis that may be relevant to mental status changes may occur. Parenthetically, SAM is being studied as a potential antidepressant.

Another possible cause of neurologic manifestations involves the other metabolically active form of cobalamin, adenosylcobalamin (see image below), a mitochondrial cofactor in the conversion of L-methylmalonyl CoA to succinyl CoA. Vitamin B-12 deficiency leads to an increase in L-methylmalonyl-CoA, which is converted to D-methylmalonyl CoA and hydrolyzed to MMA. Elevated MMA results in abnormal odd chain and branched chain fatty acids with subsequent abnormal myelination, possibly leading to defective nerve transmission.



View Image

Vitamin B-12–associated neurological diseases. Cobalamin deficiency leads to reduced adenosylcobalamin, which is required for production of succinyl-C....

More recent studies propose a very different paradigm: B-12 and its deficiency impact a network of cytokines and growth factors, ie, brain, spinal cord, and CSF TNF-alpha; nerve growth factor (NGF), IL-6 and epidermal growth factor (EGF), some of which are neurotrophic, others neurotoxic. Vitamin B-12 regulates IL-6 levels in rodent CSF. In rodent models of B-12 deficiency parenteral EGF or anti-NGF antibody injection prevents, like B-12 itself, the SCD-like lesions.

In the same models, the mRNAs of several cell-type specific proteins (glial fibrillary acidic protein, myelin basic protein) are decreased in a region specific manner in the CNS, but, in the PNS myelin, protein zero and peripheral myelin protein 22 mRNA remain unaltered.

In human and rodent serum and CSF, concomitantly with a vitamin B-12 decrease, EGF levels are decreased, while at the same time, TNF-alpha increases in step with homocysteine levels. These observations provide evidence that the clinical and histological changes of vitamin B-12 deficiency may result from up-regulation of neurotoxic cytokines and down-regulation of neurotrophic factors.[12]

N

N2 O can oxidize the cobalt core of vitamin B-12 from a 1+ to 3+ valance state, rendering methylcobalamin inactive, inhibiting HC conversion to methionine and depleting the supply of SAM. Patients with sufficient vitamin B-12 body stores can maintain cellular functions after N2 O exposure, but in patients with borderline or low vitamin B-12 stores, this oxidation may be sufficient to precipitate clinical manifestations.

Epidemiology

Frequency

The prevalence of vitamin B-12 deficiency is difficult to ascertain because of diverse etiologies and different assays (i.e., radioassay or chemiluminescence). Affected individuals may number 300,000 to 3 million in the United States.

Using the radioassay and a value less than 200 pg/mL, the prevalence of vitamin B-12 deficiency is 3-16%. In a geriatric population using a radioassay cutoff of 300 pg/mL and elevated HC and MMA levels, a prevalence of 21% was reported.

Of HIV-seropositive individuals, 11% are vitamin B-12 deficient; another 12% have levels of 200-240 pg/mL. In a subgroup with chronic diarrhea, the rate reaches 39%. However, the importance for vitamin B-12 deficiency in the development of neurologic disease in these patients remains unclear.

In Europe, the prevalence of vitamin B-12 deficiency is 1.6-10%.

In India, a hospital population radioassay study with a cutoff of 200 pg/mL found a vitamin B-12 deficiency in 0.88% of patients, with borderline values in 3.8%.

Mortality/Morbidity

See the list below:

Race

See the list below:

Sex

See the list below:

Age

See the list below:

History

Clinical course

The neurologic features are attributable to pathology in the peripheral and optic nerves, posterior and lateral columns of the spinal cord (subacute combined degeneration), and in the brain. Interestingly, hematologic and neurologic manifestations are occasionally dissociated.[14, 15] An inverse correlation in the severity of both manifestations has been suggested. In patients with neuropsychiatric abnormalities, 28% lack anemia or macrocytosis.

Clinical manifestations due to vitamin B-12 deficiency are unrelated to etiology. In a prospective comparative study between antiparietal cell antibody positive and negative patients, no significant difference was shown in clinical, electrodiagnostic, and radiological features.[16]

Although the clinical features of vitamin B-12 deficiency may consist of a classic triad of weakness, sore tongue, and paresthesias, these are not usually the chief symptoms.

Onset is subacute or gradual, although more acute courses have been described, in particular after N 2 O exposure. In 1986, Schilling described 2 patients with unrecognized vitamin B-12 deficiency who developed paresthesias and poor manual dexterity 1-3 months after brief N 2 O exposure.[17] In 1995, Kinsella and Green described a 70-year-old man with paresthesias and hand clumsiness after 2 exposures to N 2 O over 3 months.[18]

Onset is often with a sensation of cold, numbness, or tightness in the tips of the toes and then in the fingertips, rarely with lancinating pains. Simultaneous involvement of arms and legs is uncommon, and onset in the arms is even rarer.

Paresthesias are ascending and occasionally involve the trunk, leading to a sensation of constriction in the abdomen and chest.

Untreated patients may develop limb weakness and ataxia.

In 1991, Healton et al performed detailed neurologic evaluations of 143 patients with vitamin B-12 deficiency; 74% presented with neurologic symptoms.[19]

In a prospective study of 57 patients with vitamin B-12 deficiency neurological syndrome, common presenting syndromes included myeloneuropathy (25), myelopathy (14), myeloneuroencephalopathy (13), myeloencephalopathy (4), and behavioral (1).[126]

Physical

Most patients exhibit signs of peripheral nervous system (PNS) or spinal cord involvement, but the extent of PNS involvement remains unclear, in part because both neuropathy and myelopathy can cause impaired vibration sense, ataxia, and paresthesias. Either can be affected first in the early stages. Objective sensory abnormalities usually result from posterior column involvement and less often from PNS disease.

In 1919, Woltmann found features of PNS disease in 4.9% of patients with PA, including distal hyporeflexia or areflexia; 80% of these also had evidence of cord involvement.[20]

In 1991, Healton summarized his experience with a large group of patients as follows:[19]

Early in the course, poor joint position and vibration sense predominate. Typically, the legs are affected before the arms. Rarely are all limbs affected simultaneously. A Romberg sign is commonly found. The gait may be wide based.

On presentation, 50% of patients have absent ankle reflexes with relative hyperreflexia at the knees. Plantars are initially flexor and later extensor. A Hoffman sign may be found.

As the disease progresses, ascending loss of pinprick, light touch, and temperature sensation occurs. Later, depending on the predominance of posterior column versus cortical spinal tract involvement, ataxia or spastic paraplegia predominates. Then, PNS involvement causes distal limb atrophy.

Cognitive testing may reveal mild impairment or frank dementia.

Nonneurologic manifestations include the following:

Abnormal vitamin B-12 metabolism occurs in infants born to vitamin B-12–deficient mothers or those with hereditary diseases, including the Imerslünd-Grasbeck syndrome (cublin mutation resulting in decreased cobalamin transport from the intestinal lumen), transcobalamin II deficiency, and intracellular cobalamin abnormalities (classified as Cbl A though G with neurologic features in Cbl C and Cbl D, see below). Symptoms become prominent after exhaustion of vitamin B-12 stores acquired in utero. Infants present with developmental delay, failure to thrive, lethargy, poor feeding, mental retardation, seizures, listlessness, irritability, ataxia, hyporeflexia, hypotonia, pathologic reflexes, coma, tremor, and myoclonus. The latter may worsen transiently upon initiation of treatment.

Causes

Inadequate vitamin B-12 absorption is the major pathomechanism and may result from several factors.

Laboratory Studies

See the list below:

Imaging Studies

See the list below:

Other Tests

See the list below:

Procedures

See the list below:

Histologic Findings

The CNS is better characterized than the PNS in vitamin B-12 deficiency. The classic picture is subacute combined degeneration of the spinal cord involving the dorsal columns and corticospinal tracts. Lesions are concentrated in the cervical and upper thoracic cord and the cerebrum.

Spinal cord findings

See the list below:

Brain findings

See the list below:

Peripheral nervous system findings

See the list below:

Nonneurologic findings

See the list below:

Medical Care

See the list below:

Consultations

Consultations with a gastroenterologist, a hematologist, and a neurologist must be considered.

Diet

When the cause of vitamin B-12 deficiency is low intake, recommend that patients eat food that contains vitamin B-12 such as meat, eggs, cheese, and yogurt. Supplementation is required when religious or cultural restrictions render dietary changes impossible.

Activity

In most patients with vitamin B-12–associated neuropathy/myelopathy, no restriction on physical activity is necessary unless weakness or gait ataxia is severe. Also, severe encephalopathy may lead to 24-hour supervision. In severe anemia or congestive heart failure, the patient should limit strenuous exercise.

Medication Summary

Standard treatment in patients with vitamin B-12 deficiency consists of parenteral or oral cobalamin. The hematologic abnormalities may respond to folate, but the neurologic manifestations only respond to cobalamin.

Numerous treatment regimens have been proposed, including cobalamin 1000 mcg IM/SC daily for 5 days followed by 1000 mcg/wk for 5 weeks, then 100-1000 mcg/mo for life.

Because 1% of cobalamin is absorbed by passive diffusion, administration of large oral doses is an alternative; 1000 mcg daily yields a daily absorption of 10 mcg, which exceeds the 2-mcg recommended daily allowance (RDA) requirement.

In addition to cobalamin replacement, oral IF supplementation is being evaluated. Supplementation with SAM or methionine-rich diets are being studied for N 2 O-induced myeloneuropathies.

Diagnosis and treatment of tapeworm infection and celiac and Crohn diseases can improve intestinal vitamin B-12 malabsorption. With blind loop syndrome, tetracycline can normalize the intestinal flora and vitamin B-12 absorption.

Cyanocobalamin (Berubigen, Cyanoject)

Clinical Context:  Most stable and available form of vitamin B-12. Absorbed rapidly to the organism from IM or SC applications.

Oral cyanocobalamin can replace parenteral formulations. Is effective in PA because 1% of free cobalamin is absorbed via diffusion rather than requiring the presence of IF.

Folic acid (Folvite)

Clinical Context:  Folate supplementation can reverse the hematologic abnormalities, but the neurologic manifestations only respond to cobalamin.

Class Summary

Cyanocobalamin is used to replenish the deficiency caused by any of the etiologies described.

Further Outpatient Care

Patients with neurologic impairment may require additional care in skilled nursing units or rehabilitation facilities. Outpatient follow-up is required to ensure response to therapy.

Further Inpatient Care

Once therapy is initiated, hospitalization is only required for patients with life-threatening anemia or with severe neurologic deficits requiring supervision or rehabilitation.

Inpatient & Outpatient Medications

See the list below:

Deterrence/Prevention

See the list below:

Complications

See the list below:

Prognosis

See the list below:

When was the association of vitamin B-12 with neurological diseases first identified?What is the role of nitrous oxide (N2O) in the pathophysiology of vitamin B-12 associated neurological diseases?What is the structure of vitamin B-12?What is the recommended daily intake of vitamin B-12?What is the physiology of absorption of vitamin B-12?What is the role vitamin B-12 in bone marrow function?What is the role of vitamin B-12 in the peripheral and central nervous systems?What is the prevalence of vitamin B-12-deficiency?What is the morbidity of vitamin B-12 deficiency?What are the racial predilections of vitamin B-12-related neurological disorders?Which age groups are at highest risk for vitamin B-12-related neurological disorders?How does the prevalence of vitamin B-12-related neurological disorders vary among males and females?What is the clinical course of vitamin B-12 associated neurological diseases?Which clinical history is characteristic of vitamin B-12 associated neurological diseases?Which physical findings are characteristic of vitamin B-12 associated neurological diseases?How do the physical findings of vitamin B-12 associated neurological diseases vary during the clinical course?What are the signs and symptoms of vitamin B-12 associated neurological diseases?What are the signs and symptoms of abnormal vitamin B-12 metabolism in infants?Which intrinsic factors cause inadequate vitamin B-12 absorption?Which factors increase the risk of inadequate vitamin B-12 absorption?What is the role of disorders of intracellular cobalamin metabolism in the etiology of B-12 deficiency?Which disorders cause an increased vitamin B-12 requirement?What causes inadequate vitamin B-12 absorption in patients with AIDS?What are the differential diagnoses for Vitamin B-12 Associated Neurological Diseases?What is the role of lab studies in the evaluation of vitamin B-12 deficiency?How is pernicious anemia diagnosed in individuals with abnormally low vitamin B-12 levels?What is the role of methylmalonic acid (MMA) and homocysteine (HC) measurement in the evaluation of vitamin B-12 deficiency?What is the role of the Schilling test in the workup of vitamin B-12 deficiency?What is the role of routine hematologic and chemistry tests in the evaluation of vitamin B-12 deficiency?What are lab parameters after administration of vitamin B-12?What is the role of imaging studies in the workup of vitamin B-12 deficiency?What is the role of electrodiagnostic testing in the evaluation of vitamin B-12 deficiency?What is the role of bone marrow aspiration in the evaluation of vitamin B-12 deficiency?Which histologic findings are characteristic of vitamin B-12 deficiency?Which histologic spinal cord findings are characteristic of vitamin B-12 deficiency?Which histologic brain findings are characteristic of vitamin B-12 deficiency?Which histologic peripheral nervous system findings are characteristic of vitamin B-12 deficiency?Which nonneurologic histologic findings are characteristic of vitamin B-12 deficiency?What is the focus of treatment for vitamin B-12 associated neurological diseases?Which specialist consultations are recommended for the management of vitamin B-12 associated neurological diseases?Which dietary modifications are beneficial in the treatment of vitamin B-12 associated neurological diseases?Which activity modifications are beneficial in the treatment of vitamin B-12 associated neurological diseases?Which medications are used in the treatment of vitamin B-12 associated neurological diseases?Which medications in the drug class Dietary supplements are used in the treatment of Vitamin B-12 Associated Neurological Diseases?What is the role of rehabilitation in the management of vitamin B-12 associated neurological diseases?When is inpatient care indicated in the treatment of vitamin B-12 associated neurological diseases?What is the role of cobalamin in the maintenance treatment of vitamin B-12 associated neurological diseases?How are vitamin B-12 associated neurological diseases prevented?What are potential complications of vitamin B-12 associated neurological diseases?What is the prognosis of vitamin B-12 associated neurological diseases?

Author

Niranjan N Singh, MBBS, MD, DM, FAHS, FAANEM, Adjunct Associate Professor of Neurology, University of Missouri-Columbia School of Medicine; Medical Director of St Mary's Stroke Program, SSM Neurosciences Institute, SSM Health

Disclosure: Nothing to disclose.

Coauthor(s)

Alan L Diamond, DO, Movement Disorder Fellow, Department of Neurology, Baylor College of Medicine

Disclosure: Nothing to disclose.

Florian P Thomas, MD, PhD, MA, MS, Chair, Neuroscience Institute and Department of Neurology, Director, National MS Society Multiple Sclerosis Center and Hereditary Neuropathy Foundation Center of Excellence, Hackensack University Medical Center; Founding Chair and Professor, Department of Neurology, Hackensack Meridian School of Medicine at Seton Hall University; Professor Emeritus, Department of Neurology, St Louis University School of Medicine; Editor-in-Chief, Journal of Spinal Cord Medicine

Disclosure: Nothing to disclose.

Specialty Editors

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Nestor Galvez-Jimenez, MD, MSc, MHA, The Pauline M Braathen Endowed Chair in Neurology, Chairman, Department of Neurology, Program Director, Movement Disorders, Department of Neurology, Division of Medicine, Cleveland Clinic Florida

Disclosure: Nothing to disclose.

Chief Editor

Selim R Benbadis, MD, Professor, Director of Comprehensive Epilepsy Program, Departments of Neurology and Neurosurgery, Tampa General Hospital, University of South Florida Morsani College of Medicine

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Ceribell, Eisai, Greenwich, Growhealthy, LivaNova, Neuropace, SK biopharmaceuticals, Sunovion<br/>Serve(d) as a speaker or a member of a speakers bureau for: Eisai, Greenwich, LivaNova, Sunovion<br/>Received research grant from: Cavion, LivaNova, Greenwich, Sunovion, SK biopharmaceuticals, Takeda, UCB.

Additional Contributors

Christopher Luzzio, MD, Clinical Assistant Professor, Department of Neurology, University of Wisconsin at Madison School of Medicine and Public Health

Disclosure: Nothing to disclose.

References

  1. Gardner W, Osler W. A case of progressive pernicious anemia (Idiopathic of Addison). Can Med Surg J. 1877. 5:385-404.
  2. Leichtenstein O. Uber progressive perniciose anamie bei tabeskranken. Deutsche Medizinische Wochenschrift. 1884. 10:849.
  3. Lichtheim L. Zur kenntniss der perniziosen anamie. Muchen. Schweiz med wochenschr. 1887. 34:300.
  4. Minnich W. Kenntnis der im Verlaufe der perniciosen anamie beobachteten spinalerkrankungen. Zeitschrift fur Klinische Medizin. 1892. 21:264-314.
  5. Russell JSR, Batten FE, Collier J. Subacute combined degeneration of the spinal cord. Brain. 1900. 23:39.
  6. Minot GR, Murphy WP. Treatment of pernicious anemia by a special diet. JAMA. 1926. 87:470-476.
  7. Castle WB. Extrinsic factor in pernicious anemia. American Journal of Medical Science. 1929. 178:148.
  8. Lassen HCA, Henricksen E, Neukirch F. Treatment of tetanus: severe bone marrow depression after prolonged nitrous oxide anesthesia. Lancet. 1956. 1:527-530.
  9. Sahenk Z, Mendell JR, Couri D. Polyneuropathy from inhalation of N2O cartridges through a whipped-cream dispenser. Neurology. 1978 May. 28(5):485-7. [View Abstract]
  10. Layzer RB. Myeloneuropathy after prolonged exposure to nitrous oxide. Lancet. 1978 Dec 9. 2(8102):1227-30. [View Abstract]
  11. Nielsen MJ, Rasmussen MR, Andersen CB, Nexø E, Moestrup SK. Vitamin B12 transport from food to the body's cells--a sophisticated, multistep pathway. Nat Rev Gastroenterol Hepatol. 2012 May 1. 9(6):345-54. [View Abstract]
  12. Leishear K, Ferrucci L, Lauretani F, Boudreau RM, Studenski SA, Rosano C, et al. Vitamin B12 and homocysteine levels and 6-year change in peripheral nerve function and neurological signs. J Gerontol A Biol Sci Med Sci. 2012 May. 67(5):537-43. [View Abstract]
  13. Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Topolski R. The prevalence of vitamin B(12) deficiency in patients with type 2 diabetes: a cross-sectional study. J Am Board Fam Med. 2009 Sep-Oct. 22(5):528-34. [View Abstract]
  14. Nachum-Biala Y, Troen AM. B-vitamins for neuroprotection: narrowing the evidence gap. Biofactors. 2012 Mar-Apr. 38(2):145-50. [View Abstract]
  15. Leishear K, Ferrucci L, Lauretani F, Boudreau RM, Studenski SA, Rosano C, et al. Vitamin B12 and homocysteine levels and 6-year change in peripheral nerve function and neurological signs. J Gerontol A Biol Sci Med Sci. 2012 May. 67(5):537-43. [View Abstract]
  16. Misra UK, Kalita J. Comparison of clinical and electrodiagnostic features in B12 deficiency neurological syndromes with and without antiparietal cell antibodies. Postgrad Med J. 2007 Feb. 83(976):124-7. [View Abstract]
  17. Schilling RF. Is nitrous oxide a dangerous anesthetic for vitamin B12-deficient subjects?. JAMA. 1986 Mar 28. 255(12):1605-6. [View Abstract]
  18. Kinsella LJ, Green R. Anesthesia paresthetica': nitrous oxide-induced cobalamin deficiency. Neurology. 1995 Aug. 45(8):1608-10. [View Abstract]
  19. Healton EB, Savage DG, Brust JC. Neurologic aspects of cobalamin deficiency. Medicine (Baltimore). 1991 Jul. 70(4):229-45. [View Abstract]
  20. Woltmann HW. The nervous symptoms in pernicious anemia: an analysis of one hundred and fifty cases. American Journal of Medical Science. 1919. 173:400-9.
  21. Dynes JB, Norcross JW. Peripheral neuritis as a complication of pernicious anemia. JAMA. 1943. 122:586-8.
  22. Steiner I, Kidron D, Soffer D. Sensory peripheral neuropathy of vitamin B12 deficiency: a primary demyelinating disease?. J Neurol. 1988 Jan. 235(3):163-4. [View Abstract]
  23. Greenfield JG. Subacute spinocerebellar degeneration occurring in elderly patients. Brain. 1934. 57:161-76.
  24. McCombe PA, McLeod JG. The peripheral neuropathy of vitamin B12 deficiency. J Neurol Sci. 1984 Oct. 66(1):117-26. [View Abstract]
  25. Coers C, Woolf AL. The Innervation of Muscle. Oxford, England: Blackwell Scientific; 1959. 91.
  26. Dalla Torre C, Lucchetta M, Cacciavillani M, Campagnolo M, Manara R, Briani C. Reversible isolated sensory axonal neuropathy due to cobalamin deficiency. Muscle Nerve. 2012 Mar. 45(3):428-30. [View Abstract]
  27. van Loon M, Postels DG, Heikens GT, Molyneux E. Severe pernicious anaemia in an 8-year-old African girl. Ann Trop Paediatr. 2009 Sep. 29(3):231-4. [View Abstract]
  28. Lahner E, Annibale B. Pernicious anemia: new insights from a gastroenterological point of view. World J Gastroenterol. 2009 Nov 7. 15(41):5121-8. [View Abstract]
  29. Vasconcelos OM, Poehm EH, McCarter RJ, Campbell WW, Quezado ZM. Potential outcome factors in subacute combined degeneration: review of observational studies. J Gen Intern Med. Oct 2006. 21(10):1063-8. [View Abstract]
  30. Adachi H, Hirai Y, Fujiura Y. Plasma homocysteine levels and atherosclerosis in Japan: epidemiological study by use of carotid ultrasonography. Stroke. 2002 Sep. 33(9):2177-81. [View Abstract]
  31. Addison T. Anemia: Disease of the suprarenal capsules. London Med Gazette. 1849. 8:517-518.
  32. Al-Shubaili AF, Farah SA, Hussein JM, et al. Axonal and demyelinating neuropathy with reversible proximal conduction block, an unusual feature of vitamin B12 deficiency. Muscle Nerve. 1998 Oct. 21(10):1341-3. [View Abstract]
  33. Allen RH, Stabler SP, Savage DG. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J. 1993 Nov. 7(14):1344-53. [View Abstract]
  34. Andres E, Noel E, Kaltenbach G. [Vitamin B12 deficiency with normal Schilling test or non-dissociation of vitamin B12 and its carrier proteins in elderly patients. A study of 60 patients]. Rev Med Interne. 2003 Apr. 24(4):218-23. [View Abstract]
  35. Baik HW, Russell RM. Vitamin B12 deficiency in the elderly. Annu Rev Nutr. 1999. 19:357-77. [View Abstract]
  36. Balducci L. Epidemiology of anemia in the elderly: information on diagnostic evaluation. J Am Geriatr Soc. 2003 Mar. 51(3 Suppl):S2-9. [View Abstract]
  37. Beach RS, Mantero-Atienza E, Shor-Posner G. Specific nutrient abnormalities in asymptomatic HIV-1 infection. AIDS. 1992 Jul. 6(7):701-8. [View Abstract]
  38. Berger JR, Quencer R. Reversible myelopathy with pernicious anemia: clinical/MR correlation. Neurology. 1991 Jun. 41(6):947-8. [View Abstract]
  39. Booth GL, Wang EE. Preventive health care, 2000 update: screening and management of hyperhomocysteinemia for the prevention of coronary artery disease events. The Canadian Task Force on Preventive Health Care. CMAJ. 2000 Jul 11. 163(1):21-9. [View Abstract]
  40. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995 Oct 4. 274(13):1049-57. [View Abstract]
  41. Carmel R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch Intern Med. 1996 May 27. 156(10):1097-100. [View Abstract]
  42. Carmel R. Reassessment of the relative prevalences of antibodies to gastric parietal cell and to intrinsic factor in patients with pernicious anaemia: influence of patient age and race. Clin Exp Immunol. 1992 Jul. 89(1):74-7. [View Abstract]
  43. Carmel R, Gott PS, Waters CH. The frequently low cobalamin levels in dementia usually signify treatable metabolic, neurologic and electrophysiologic abnormalities. Eur J Haematol. 1995 Apr. 54(4):245-53. [View Abstract]
  44. Carmel R, Johnson CS. Racial patterns in pernicious anemia. Early age at onset and increased frequency of intrinsic-factor antibody in black women. N Engl J Med. 1978 Mar 23. 298(12):647-50. [View Abstract]
  45. Carmel R, Johnson CS, Weiner JM. Pernicious anemia in Latin Americans is not a disease of the elderly. Arch Intern Med. 1987 Nov. 147(11):1995-6. [View Abstract]
  46. Chanarin I. The Megaloblastic Anemias. 2nd ed. Oxford, England: Blackwell Scientific; 1979.
  47. Clarke R, Smith AD, Jobst KA, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998 Nov. 55(11):1449-55. [View Abstract]
  48. Cole M. Neurological manifestation of vitamin B12 deficiency. Goetz C, Aminoff M, eds. Handbook of Clinical Neurology. Vol 26. Systemic Diseases. Part II. Amsterdam, Holland: Elsevier Science BV; 1998: 367-405.
  49. Combe JJ. History of a case of anemia. Trans Med Chir Soc Edimb. 1822. 1:194-204.
  50. Cunha UG, Rocha FL, Peixoto JM. Vitamin B12 deficiency and dementia. Int Psychogeriatr. 1995 Spring. 7(1):85-8. [View Abstract]
  51. Daly LE, Kirke PN, Molloy A, et al. Folate levels and neural tube defects. Implications for prevention. JAMA. 1995 Dec 6. 274(21):1698-702. [View Abstract]
  52. Dana CL. Subacute combined sclerosis of the spinal cord and its relation to anemia and to toxemia. J Nerv Ment Dis. 1899. 26:1.
  53. Diaz-Arrastia R. Homocysteine and neurologic disease. Arch Neurol. 2000 Oct. 57(10):1422-7. [View Abstract]
  54. Ehrenpreis ED, Carlson SJ, Boorstein HL. Malabsorption and deficiency of vitamin B12 in HIV-infected patients with chronic diarrhea. Dig Dis Sci. 1994 Oct. 39(10):2159-62. [View Abstract]
  55. Fenwick S. On atrophy of the stomach. Lancet. 1870. ii:78-80.
  56. Fine EJ, Hallett M. Neurophysiological study of subacute combined degeneration. J Neurol Sci. 1980 Mar. 45(2-3):331-6. [View Abstract]
  57. Fine EJ, Soria E, Paroski MW. The neurophysiological profile of vitamin B12 deficiency. Muscle Nerve. 1990 Feb. 13(2):158-64. [View Abstract]
  58. Fowler B. Genetic defects of folate and cobalamin metabolism. Eur J Pediatr. 1998 Apr. 157 Suppl 2:S60-6. [View Abstract]
  59. Goodman BP, Chong BW, Patel AC, Fletcher GP, Smith BE. Copper deficiency myeloneuropathy resembling B12 deficiency: partial resolution of MR imaging findings with copper supplementation. AJNR Am J Neuroradiol. 2006 Nov-Dec. 27(10):2112-4. [View Abstract]
  60. Graham D, Lantos P. Vitamin Deficiencies. In: Greenfield's Neuropathology. 6th ed. London, England:. Arnold Publishers. 1997:621-624.
  61. Grattan-Smith PJ, Wilcken B, Procopis PG. The neurological syndrome of infantile cobalamin deficiency: developmental regression and involuntary movements. Mov Disord. 1997 Jan. 12(1):39-46. [View Abstract]
  62. Green R, Kinsella LJ. Current concepts in the diagnosis of cobalamin deficiency. Neurology. 1995 Aug. 45(8):1435-40. [View Abstract]
  63. Greenfield JG, Carmichael EA. Peripheral nerves in cases of subacute combined degeneration of the cord. Brain. 1935. 58:483-91.
  64. Gueant JL, Saunier M, Gastin I. Decreased activity of intestinal and urinary intrinsic factor receptor in Grasbeck-Imerslund disease [corrected]. Gastroenterology. 1995 Jun. 108(6):1622-8. [View Abstract]
  65. Hamilton AS, Nixon CE. Sensory changes in the subacute combined degeneration of pernicious anemia. Arch Neurol Psychiatry. 1921. 6:1.
  66. Hemmer B, Glocker FX, Schumacher M, et al. Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry. 1998 Dec. 65(6):822-7. [View Abstract]
  67. Hennerici M. Dissociated foveal and parafoveal visual evoked responses in subacute combined degeneration. Arch Neurol. 1985 Feb. 42(2):130-2. [View Abstract]
  68. Hsing AW, Hansson LE, McLaughlin JK, et al. Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer. 1993 Feb 1. 71(3):745-50. [View Abstract]
  69. Hutto BR. Folate and cobalamin in psychiatric illness. Compr Psychiatry. 1997 Nov-Dec. 38(6):305-14. [View Abstract]
  70. Jacques PF, Rosenberg IH, Rogers G, et al. Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 1999 Mar. 69(3):482-9. [View Abstract]
  71. Janson JJ, Galarza CR, Murua A. Prevalence of hyperhomocysteinemia in an elderly population. Am J Hypertens. 2002 May. 15(5):394-7. [View Abstract]
  72. Kagan BL, Sultzer DL, Rosenlicht N. Oral S-adenosylmethionine in depression: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry. 1990 May. 147(5):591-5. [View Abstract]
  73. Kang SS, Wong PW, Zhou JM, Cook HY. Total homocyst(e)ine in plasma and amniotic fluid of pregnant women. Metabolism. 1986 Oct. 35(10):889-91. [View Abstract]
  74. Kapadia CR. Vitamin B12 in health and disease: part I--inherited disorders of function, absorption, and transport. Gastroenterologist. 1995 Dec. 3(4):329-44. [View Abstract]
  75. Kaptan K, Beyan C, Ural AU. Helicobacter pylori--is it a novel causative agent in Vitamin B12 deficiency?. Arch Intern Med. 2000 May 8. 160(9):1349-53. [View Abstract]
  76. Karlsson FA, Burman P, Loof L. Enzyme-linked immunosorbent assay of H+,K+-ATPase, the parietal cell antigen. Clin Exp Immunol. 1987 Dec. 70(3):604-10. [View Abstract]
  77. Karnaze DS, Carmel R. Neurologic and evoked potential abnormalities in subtle cobalamin deficiency states, including deficiency without anemia and with normal absorption of free cobalamin. Arch Neurol. 1990 Sep. 47(9):1008-12. [View Abstract]
  78. Katsaros VK, Glocker FX, Hemmer B, Schumacher M. MRI of spinal cord and brain lesions in subacute combined degeneration. Neuroradiology. 1998 Nov. 40(11):716-9. [View Abstract]
  79. Kieburtz KD, Giang DW, Schiffer RB, Vakil N. Abnormal vitamin B12 metabolism in human immunodeficiency virus infection. Association with neurological dysfunction. Arch Neurol. 1991 Mar. 48(3):312-4. [View Abstract]
  80. Kirke PN, Molloy AM, Daly LE. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med. 1993 Nov. 86(11):703-8. [View Abstract]
  81. Krumholz A, Weiss HD, Goldstein PJ, Harris KC. Evoked responses in vitamin B12 deficiency. Ann Neurol. 1981 Apr. 9(4):407-9. [View Abstract]
  82. Larner AJ, Zeman AZ, Allen CM. MRI appearances in subacute combined degeneration of the spinal cord due to vitamin B12 deficiency. J Neurol Neurosurg Psychiatry. 1997 Jan. 62(1):99-100. [View Abstract]
  83. Lehmann M, Gottfries CG, Regland B. Identification of cognitive impairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord. 1999 Jan-Feb. 10(1):12-20. [View Abstract]
  84. Lester-Smith E. Purification of antipernicious amaemia factors from liver. Nature. 1948. 161:638-639.
  85. Lindenbaum J, Rosenberg IH, Wilson PW, et al. Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr. 1994 Jul. 60(1):2-11. [View Abstract]
  86. Lindenbaum J, Savage DG, Stabler SP. Diagnosis of cobalamin deficiency: II. Relative sensitivities of serum cobalamin, methylmalonic acid, and total homocysteine concentrations. Am J Hematol. 1990 Jun. 34(2):99-107. [View Abstract]
  87. Magnaghi V, Veber D, Morabito A. Decreased GFAP-mRNA expression in spinal cord of cobalamin-deficient rats. FASEB J. 2002. 16:1820-1822. [View Abstract]
  88. Marie RM, Le Biez E, Busson P, et al. Nitrous oxide anesthesia-associated myelopathy. Arch Neurol. 2000 Mar. 57(3):380-2. [View Abstract]
  89. Metz J. Cobalamin deficiency and the pathogenesis of nervous system disease. Annu Rev Nutr. 1992. 12:59-79. [View Abstract]
  90. Metz J. Pathogenesis of cobalamin neuropathy: deficiency of nervous system S-adenosylmethionine?. Nutr Rev. 1993 Jan. 51(1):12-5. [View Abstract]
  91. Ozer EA, Turker M, Bakiler AR. Involuntary movements in infantile cobalamin deficiency appearing after treatment. Pediatr Neurol. 2001 Jul. 25(1):81-3. [View Abstract]
  92. Paltiel O, Falutz J, Veilleux M. Clinical correlates of subnormal vitamin B12 levels in patients infected with the human immunodeficiency virus. Am J Hematol. 1995 Aug. 49(4):318-22. [View Abstract]
  93. Pant SS, Asbury AK, Richardson EP Jr. The myelopathy of pernicious anemia. A neuropathological reappraisal. Acta Neurol Scand. 1968. 44:Suppl 5:1-36. [View Abstract]
  94. Penix LP. Ischemic strokes secondary to vitamin B12 deficiency-induced hyperhomocystinemia. Neurology. 1998 Aug. 51(2):622-4. [View Abstract]
  95. Perros P, Singh RK, Ludlam CA, Frier BM. Prevalence of pernicious anaemia in patients with Type 1 diabetes mellitus and autoimmune thyroid disease. Diabet Med. 2000 Oct. 17(10):749-51. [View Abstract]
  96. Platica O, Janeczko R, Quadros EV. The cDNA sequence and the deduced amino acid sequence of human transcobalamin II show homology with rat intrinsic factor and human transcobalamin I. J Biol Chem. 1991 Apr 25. 266(12):7860-3. [View Abstract]
  97. Postiglione A, Milan G, Ruocco A. Plasma folate, vitamin B(12), and total homocysteine and homozygosity for the C677T mutation of the 5,10-methylene tetrahydrofolate reductase gene in patients with Alzheimer''s dementia. A case-control study. Gerontology. 2001 Nov-Dec. 47(6):324-9. [View Abstract]
  98. Pruthi RK, Tefferi A. Pernicious anemia revisited. Mayo Clin Proc. 1994 Feb. 69(2):144-50. [View Abstract]
  99. Putnam JJ. A group of cases of systemic scleroses of the spinal cord, associated with diffuse collateral degeneration, occurring in enfeebled persons past middle life, especially in women: Studied with particular reference to etiology. J Nerv Ment Dis. 1891. 16:69.
  100. Remacha AF, Cadafalch J. Cobalamin deficiency in patients infected with the human immunodeficiency virus. Semin Hematol. 1999 Jan. 36(1):75-87. [View Abstract]
  101. Renault F, Verstichel P, Ploussard JP. Neuropathy in two cobalamin-deficient breast-fed infants of vegetarian mothers. Muscle Nerve. 1999 Feb. 22(2):252-4. [View Abstract]
  102. Richmond J, Davidson S. Subacute combined degeneration of the spinal cord in non-Addisonian megaloblastic anaemia. Quarterly Journal of Medicine. 1958. 27:517-531.
  103. Rickes EL, Brink NG, Koniuszy FR. Crystalline vitamin B 12. Science. 1948. 107:396.
  104. Robertson KR, Stern RA, Hall CD. Vitamin B12 deficiency and nervous system disease in HIV infection. Arch Neurol. 1993 Aug. 50(8):807-11. [View Abstract]
  105. Sacco RL, Roberts JK, Jacobs BS. Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution. Neuroepidemiology. 1998. 17(4):167-73. [View Abstract]
  106. Savage DG, Lindenbaum J. Neurological complications of acquired cobalamin deficiency: clinical aspects. Baillieres Clin Haematol. 1995 Sep. 8(3):657-78. [View Abstract]
  107. Savage DG, Lindenbaum J, Stabler SP. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med. 1994 Mar. 96(3):239-46. [View Abstract]
  108. Scalabrino G, Carpo M, Bamonti F. High tumor necrosis factor-alpha [corrected] levels in cerebrospinal fluid of cobalamin-deficient patients. Ann Neurol. 2004. 56:886-890. [View Abstract]
  109. Scalabrino G, Corsi MM, Veber D. Cobalamin (vitamin B(12)) positively regulates interleukin-6 levels in rat cerebrospinal fluid. J Neuroimmunol. 2002. 127:37-43. [View Abstract]
  110. Scalabrino G, Mutti E, Veber D. Increased spinal cord NGF levels in rats with cobalamin (vitamin B12) deficiency. Neurosci Lett. 2006 Mar 27. 396(2):153-8. [View Abstract]
  111. Scott E. The prevalence of pernicious anemia in Britain. J Coll Gen Pract Res News. 1960. 3:80-4.
  112. Scott JM. Folate and vitamin B12. Proc Nutr Soc. 1999 May. 58(2):441-8. [View Abstract]
  113. Selhub J, D'Angelo A. Hyperhomocysteinemia and thrombosis: acquired conditions. Thromb Haemost. 1997 Jul. 78(1):527-31. [View Abstract]
  114. Stabler SP, Allen RH, Fried LP, et al. Racial differences in prevalence of cobalamin and folate deficiencies in disabled elderly women. Am J Clin Nutr. 1999 Nov. 70(5):911-9. [View Abstract]
  115. Stabler SP, Allen RH, Savage DG. Clinical spectrum and diagnosis of cobalamin deficiency. Blood. 1990 Sep 1. 76(5):871-81. [View Abstract]
  116. Stacy CB, Di Rocco A, Gould RJ. Methionine in the treatment of nitrous-oxide-induced neuropathy and myeloneuropathy. J Neurol. 1992 Aug. 239(7):401-3. [View Abstract]
  117. Sumner AE, Chin MM, Abrahm JL, et al. Elevated methylmalonic acid and total homocysteine levels show high prevalence of vitamin B12 deficiency after gastric surgery. Ann Intern Med. 1996 Mar 1. 124(5):469-76. [View Abstract]
  118. Surtees R. Biochemical pathogenesis of subacute combined degeneration of the spinal cord and brain. J Inherit Metab Dis. 1993. 16(4):762-70. [View Abstract]
  119. Tan SV, Guiloff RJ. Hypothesis on the pathogenesis of vacuolar myelopathy, dementia, and peripheral neuropathy in AIDS. J Neurol Neurosurg Psychiatry. 1998 Jul. 65(1):23-8. [View Abstract]
  120. Tefferi A, Pruthi RK. The biochemical basis of cobalamin deficiency. Mayo Clin Proc. 1994 Feb. 69(2):181-6. [View Abstract]
  121. Toh BH, van Driel IR, Gleeson PA. Pernicious anemia. N Engl J Med. 1997 Nov 13. 337(20):1441-8. [View Abstract]
  122. Tracey JP, Schiffman FJ. Magnetic resonance imaging in cobalamin deficiency. Lancet. 1992 May 9. 339(8802):1172-3. [View Abstract]
  123. Van der Mooren MJ, Wouters MG, Blom HJ, et al. Hormone replacement therapy may reduce high serum homocysteine in postmenopausal women. Eur J Clin Invest. 24(11):733-6. [View Abstract]
  124. Victor M. Polyneuropathy due to nutritional deficiency and alcoholism. Dyck PJ, Thomas PK, Lambert EH, eds. Peripheral Neuropathy. Philadelphia, Pa: WB Saunders; 1975: 1030.
  125. Wadia RS, Bandishti S, Kharche M. B12 and folate deficiency: incidence and clinical features. Neurol India. 2000 Dec. 48(4):302-4. [View Abstract]
  126. Wang HX, Wahlin A, Basun H. Vitamin B(12) and folate in relation to the development of Alzheimer''s disease. Neurology. 2001 May 8. 56(9):1188-94. [View Abstract]
  127. Weir DG, Scott JM. Brain function in the elderly: role of vitamin B12 and folate. Br Med Bull. 1999. 55(3):669-82. [View Abstract]
  128. Wilhelm H, Grodd W, Schiefer U. Uncommon chiasmal lesions: demyelinating disease, vasculitis, and cobalamin deficiency. Ger J Ophthalmol. 1993. 2(4-5):234-40. [View Abstract]
  129. Wright JD, Bialostosky K, Gunter EW, et al. Blood folate and vitamin B12: United States, 1988-94. Vital Health Stat 11. 1998 Dec. (243):1-78. [View Abstract]
  130. Yao Y, Yao SL, Yao SS. Prevalence of vitamin B12 deficiency among geriatric outpatients. J Fam Pract. 1992 Nov. 35(5):524-8. [View Abstract]
  131. Yoo JH, Chung CS, Kang SS. Relation of plasma homocyst(e)ine to cerebral infarction and cerebral atherosclerosis. Stroke. 1998 Dec. 29(12):2478-83. [View Abstract]

Vitamin B-12–associated neurological diseases. Pernicious anemia. Characteristic lemon-yellow pallor with raw beef tongue lacking filiform papillae. Photo from Forbes and Jackson with permission.

Vitamin B-12–associated neurological diseases. Cobalamin and folate metabolism. TS = thymidylate synthase, DHFR = dihydrofolate reductase, SHMT = serine methyl-transferase.

Vitamin B-12–associated neurological diseases. Cobalamin deficiency leads to reduced adenosylcobalamin, which is required for production of succinyl-CoA. D-methylmalonyl-CoA is converted to methylmalonic acid.

Vitamin B-12–associated neurological diseases. Cobalamin and folate metabolism. TS = thymidylate synthase, DHFR = dihydrofolate reductase, SHMT = serine methyl-transferase.

Vitamin B-12–associated neurological diseases. Cobalamin deficiency leads to reduced adenosylcobalamin, which is required for production of succinyl-CoA. D-methylmalonyl-CoA is converted to methylmalonic acid.

Vitamin B-12–associated neurological diseases. Pernicious anemia. Characteristic lemon-yellow pallor with raw beef tongue lacking filiform papillae. Photo from Forbes and Jackson with permission.

Vitamin B-12–associated neurological diseases. Fluid attenuated inversion recovery (Flair) MRI sequence in a patient with cobalamin deficiency and neuropsychiatric manifestations. Discrete areas of hyperintensities are present in the corona radiata.