Hypogammaglobulinemia

Back

Practice Essentials

Hypogammaglobulinemia refers to a set of clinicolaboratory entities with varied causes and manifestations. The common clinical feature of hypogammaglobulinemia relates to a predisposition toward infections that normally are defended against by antibody responses (including Streptococcus pneumoniae and Haemophilus influenzae infections).

Signs and symptoms

Most patients with hypogammaglobulinemia present with a history of recurrent infections. A detailed clinical history should emphasize the following:

Physical findings may include the following:

See Clinical Presentation for more detail.

Diagnosis

Laboratory studies that may be helpful include the following:

Imaging studies that may be useful include the following:

The following tests may be considered as circumstances warrant:

The following biopsy procedures may also be considered:

See Workup for more detail.

Management

Replacement therapy with immunoglobulin G (IgG), administered intravenously (IVIG) or subcutaneously (SCIG), is the treatment of choice for most primary immunodeficiency syndromes, including the following:

Treatment of secondary hypogammaglobulinemia is directed at the underlying cause, as follows:

See Treatment and Medication for more detail.

Background

Hypogammaglobulinemia refers to a set of clinicolaboratory entities with varied causes and manifestations. Several codes in the International Classification of Diseases, 9th edition (ICD-9) relate to disorders in which hypogammaglobulinemia is a primary feature. These include deficiencies of humoral immunity, which is coded 279.0. The common clinical feature of hypogammaglobulinemia relates to a predisposition toward infections that normally are defended against by antibody responses. These include Streptococcus pneumoniae and Haemophilus influenzae infections, which frequently involve the respiratory tract.

While primary immunodeficiencies causing hypogammaglobulinemia are relatively uncommon, the demand for gammaglobulin treatment has grown and placed demands on the limited supply of this treatment. Therefore, an awareness of the appropriate diagnostic and therapeutic approaches to hypogammaglobulinemia is important.

Specific immune responses are based on 2 major components, ie, (1) humoral immunity, involving antibodies produced by B lymphocytes also known as B cells, and (2) cellular immunity, requiring recognition by T lymphocytes or T cells. Immunoglobulins (Igs) produced by B cells play a central role in humoral immunity, and deficiency may result in dramatic consequences for the body's defense against infections. Disorders of the immune system that can result in hypogammaglobulinemia can involve B cells, T cells, or both.

The information in this article is not meant to be a comprehensive review but rather, a guide on the differential diagnoses of hypogammaglobulinemia. This article provides a review of the causes, clinical symptoms, diagnosis, complications, and treatment of the more common forms of hypogammaglobulinemia.

Pathophysiology

Immunoglobulins play crucial roles in the immune response by recognizing foreign antigens and triggering effector mechanisms and physiologic responses that attempt, and usually succeed, in eliminating the invading organism bearing that antigen. The human immune system is capable of producing up to 109 different antibody species to interact with a wide range of antigens. The known immunoglobulin isotypes, named after their heavy-chains, are IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE.

The structural diversity of Ig isotypes is reflected in their functions. IgG isotypes represent the major component (approximately 85%) of all antibodies in serum, and IgA predominates in secretions. By binding to receptors for their Fc regions, they mediate many functions, including antibody-dependent cell-mediated cytotoxicity, phagocytosis, and clearance of immune complexes. IgM plays a pivotal role in the primary immune response. IgM, IgG1, IgG3, and, to a lesser degree, IgG2, fix and activate complement by the classical pathway. Most types of phagocytes bear receptors for the Fc of IgG.

In general, IgG1 is the major component of the response to protein antigens (eg, antitetanus and antidiphtheria antibodies). IgG2 and some IgG3 are produced in response to polysaccharide antigens (eg, antipneumococcal antibodies). Some patients who lack IgG2 still respond to polysaccharide antigens. IgG3 seems to play an important role in the response to respiratory viruses. IgA and, to a lesser extent, IgM, produced locally and secreted by mucous membranes, are the major determinants of mucosal immunity. IgG is the only Ig class that crosses the placenta. This occurs mostly during the third trimester of pregnancy and provides the full-term infant with effective humoral immunity during the first months of life. The levels of maternal antibodies slowly fall because of catabolism, reaching nonprotective levels by about 6 months of age. During this time, the infant begins endogenous production of IgG.

With the advent of serum protein electrophoresis, the globulins were considered to be comprised of 3 major fractions, alpha being the fastest moving and gamma the slowest. The gamma-globulin fraction is primarily composed of immunoglobulins, of which IgG is the largest component, constituting about 80% of the serum immunoglobulins in normal plasma, and is distributed throughout the entire volume of extracellular fluid. Immunoglobulins are produced by plasma cells.

Catabolism of immunoglobulins occurs in a concentration-dependent manner, with higher concentrations being cleared faster. This phenomenon may have therapeutic implications: a specific, saturable Fc receptor (termed FcRn, which differs from phagocyte Fc receptors) is thought to promote cellular recycling of intact immunoglobulin molecules, preventing their catabolism by lysosomes and therefore prolonging their half-life in the circulation. Normal IgG molecules have a half-life of 21-28 days. Renal clearance occurs for immunoglobulin fragments, not intact molecules. These fragments may be elevated in certain disease states and may be detected, for example, as myeloma -associated Bence Jones proteins in the urine.

Acquired or secondary hypogammaglobulinemia usually involves a few general categories. The major types include medications, renal loss of immunoglobulins, gastrointestinal immunoglobulin loss, B-cell–related malignancies, and severe burns. Renal loss of immunoglobulins is exemplified by nephrotic syndrome, in which IgG loss is usually accompanied by albumin loss. Gastrointestinal loss occurs in protein-losing enteropathies and intestinal lymphangiectasia. Increased catabolism occurs in various diseases, including the B-cell lineage malignancies and severe burns but also in dystrophic myotonia.

Hypogammaglobulinemia may result from lack of production, excessive loss of immunoglobulins, or both. Congenital disorders affecting B-cell development can result in complete or partial absence of one or more Ig isotypes. The classic form of this type of disorder is Bruton agammaglobulinemia, also known as X-linked agammaglobulinemia (XLA). Because B, T, and natural killer (NK) cells share a common progenitor, defects occurring at early developmental stages may result in combined immunodeficiency involving all cell types, although defects further down the differentiation pathways may result in deficiencies of a single cell type only.

The symptoms depend on the type and severity of the Ig deficiency and the presence or deficiency of cellular immunity. In general, hypogammaglobulinemia results in recurrent infections with a restricted set of microorganisms primarily localized to the upper and lower airways, although bacteremia and GI infections can also occur. Patients with associated defects in cellular immunity usually present with opportunistic viral, fungal, or parasitic infections.

For a detailed discussion of inherited causes of hypogammaglobulinemia, see Pure B-Cell Disorders.

Epidemiology

Frequency

The incidence of genetically determined immunodeficiency is relatively low when compared with acquired immunodeficiency. Humoral immunity deficiencies represent 50% of all primary immunodeficiencies. IgA deficiency is the most common antibody deficiency syndrome, followed by common variable immunodeficiency (CVID). The incidence of these 2 disorders is estimated to be 1 case in 700 persons and 1 case in 5,000-10,000 persons of European ancestry, respectively. Selective IgM deficiency is a rare disorder. IgG4 deficiency is very common and is detected in 10-15% of the general population. It usually does not cause clinical hypogammaglobulinemia and usually is asymptomatic.

Mortality/Morbidity

Patients with hypogammaglobulinemia experience an increased incidence of a large spectrum of infections starting at an early age.

Race

No racial or ethnic predilection is recognized.

Sex

In children, primary immunodeficiencies are more common in boys than in girls (male-to-female ratio of approximately 5:1). In adults, primary immunodeficiencies are diagnosed almost equally in both sexes (male-to-female ratio of approximately 1:1.4).

Age

History

Most patients with hypogammaglobulinemia present with a history of recurrent infections. A detailed clinical history should emphasize the following:

Physical

Causes

Hypogammaglobulinemia may be caused by primary (congenital) or secondary (acquired) disorders. The following lists of key disorders are not meant to be exhaustive. Note that primary disorders, which may be inherited or due to spontaneous mutations, may not present clinically until later in life, even though the gene defect is present since birth. Thus, most cases of XLA do not present before 6 months of age; most cases of CVID, which do not present until the third or fourth decade of life, are considered primary immune deficiencies and are presumed to be due to as yet undiscovered gene defects.

Laboratory Studies

Imaging Studies

Other Tests

Histologic Findings

Medical Care

Activity

Special restrictions on physical activity are not needed.

Medication Summary

The goals of pharmacotherapy are to reduce morbidity and to prevent complications. The standard treatment for hypogammaglobulinemia is IgG replacement, which may be given intravenously or subcutaneously.[9, 10, 20] IgG preparations are approved by the US Food and Drug Administration (FDA) for treatment of primary immunodeficiency disease (primary humoral immunodeficiency) and a few additional indications, but considerable amounts of intravenous immunoglobulins (IVIG) are used "off label" for other conditions.[9, 20]

As reviewed by the American Academy of Allergy, Asthma, and Immunology, the benefit of IgG treatment for these primary immune deficiencies is based on category IIb evidence (13).[9] IVIG is approved for only 2 secondary immune deficiencies: B-cell chronic lymphocytic leukemia (B-CLL) and pediatric HIV. The use of IVIG for primary immune defects with normogammaglobulinemia and impaired specific antibody production is based on category III evidence only.[9]

The usual IVIG dose is 0.4-0.6 g/kg every 3-4 weeks, titrating the dose and interval between infusions to achieve a trough IgG level greater than 500 mg/dL. Usual total monthly doses of subcutaneous IgG (SCIG) are in the same range, given as 100-200 mg/kg/wk. Some practitioners target trough levels 300 mg/dL higher than pretreatment levels, and trough levels >800 mg/dL may improve pulmonary outcomes. Some centers administer a loading dose of 1g/kg if the patient is agammaglobulinemic.[9, 10, 20]

Gammaglobulin may also be given intramuscularly or subcutaneously.[20] The latter format is useful when allergic reactions limit the dose or rate, but it is becoming increasingly popular even when these problems are not present. SCIG can be given at home by parents or by patients themselves, usually requiring several hours of infusion. Intramuscular gammaglobulin injections were the standard of care before IVIG became readily available and are still useful in certain patients because of the simplicity of administration and fewer reactions. However, local injection site pain can be significant, and the doses that can be given this way are limited.

Up to 44% of patients report adverse reactions to IVIG. These most commonly respond to decreasing the rate of the Ig infusion. Usually, the IVIG-associated reactions are infusion-related and include back pain, abdominal aching, nausea, rhinitis, asthma, chills, low-grade fever, myalgias, and headaches. Renal failure is a less common but serious adverse reaction that was predominately caused by sucrose-containing lyophilized IgG preparations that are no longer available in the United States. Infusion rate reduction, systemic steroids, histamine blockers, and antipyretics or nonsteroidal anti-inflammatory drugs (NSAIDs) can help treat or prevent the reactions.

Although the incidence of reactions is highest during the first infusion, they may occur in repeat infusions of the same product. Although anti-IgA antibodies can be associated with increased reactions, most patients (regardless of anti-IgA antibody status) tolerate IVIG that is not depleted of IgA (low-IgA products should be selected for treatment in patients who cannot tolerate IVIG that is not depleted of IgA). Thrombosis, myocardial infarction, hemolytic anemia, hyperviscosity syndrome, and aseptic meningitis are uncommon but reported adverse events.

Immune globulin intravenous (Flebogamma, Gammagard, Gamunex, Privigen) and subcutaneous (Vivaglobin)

Clinical Context:  Results in elevated antiviral or antibacterial antibody titers for 1 mo.

Trough levels >500 mg/dL do not necessarily improve infection control except in certain long-standing infections but may significantly increase cost.

Class Summary

Improve clinical and immunologic aspects of the disease.

Further Outpatient Care

Inpatient & Outpatient Medications

Transfer

Deterrence/Prevention

Complications

Prognosis

Author

Robert Y Lin, MD, Professor, Department of Medicine, New York Medical College; Chief, Allergy and Immunology, and Director of Utilization Review, Department Medicine, New York Downtown Hospital

Disclosure: Nothing to disclose.

Coauthor(s)

Amit J Shah, MD, Allergist/Immunologist, Asthma and Allergy Clinic of Utah, Salt Lake City, UT

Disclosure: Nothing to disclose.

Jenny Shliozberg, MD, Associate Clinical Professor, Department of Pediatrics, Division of Allergy and Immunology, Albert Einstein College of Medicine; Consulting Staff, Department of Pediatrics, Montefiore Hospital Medical Center and Albert Einstein College of Medicine; Director of Pediatric Allergy and Immunization Clinic, Children's Hospital at Montefiore Medical Center

Disclosure: Nothing to disclose.

Specialty Editors

Melvin Berger, MD, PhD, Adjunct Professor of Pediatrics and Pathology, Case Western Reserve University; Senior Medical Director, Clinical Research and Development, CSL Behring, LLC

Disclosure: CSL Behring Salary Employment; CSL Behring Ownership interest Employment; America's Health insurance plans Consulting fee Subject Matter Expert For Clinical Immunization Safety Assessment Network acvtivity of CDC

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Michael R Simon, MD, MA, Clinical Professor Emeritus, Departments of Internal Medicine and Pediatrics, Wayne State University School of Medicine; Professor, Department of Internal Medicine, Oakland University William Beaumont University School of Medicine; Adjunct Staff, Division of Allergy and Immunology, Department of Internal Medicine, William Beaumont Hospital

Disclosure: Secretory IgA, Inc. Ownership interest Management position; siRNAx, Inc. Ownership interest Management position

Timothy D Rice, MD, Associate Professor, Departments of Internal Medicine and Pediatrics and Adolescent Medicine, St Louis University School of Medicine

Disclosure: Nothing to disclose.

Chief Editor

Michael A Kaliner, MD, Clinical Professor of Medicine, George Washington University School of Medicine; Chief, Section of Allergy and Immunology, Washington Hospital Center; Medical Director, Institute for Asthma and Allergy

Disclosure: Teva Honoraria Speaking and teaching; Meda Honoraria Speaking and teaching; genentech Honoraria Speaking and teaching; sunovian Consulting fee Consulting

Additional Contributors

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous authors James O Ballard, MD, Issam Makhoul, MD, and Avi M Deener, MD, to the development and writing of this article.

References

  1. Buckley R. Primary immunodeficiency diseases. In: Middleton E Jr, Reed CE, Ellis EF, Adkinson NF Jr, Yunginger JW, Busse WW, eds. Allergy: Principles & Practice. 5th ed. Mo: Mosby: St. Louis; 1998:713-34.
  2. Sokolic R, Kesserwan C, Candotti F. Recent advances in gene therapy for severe congenital immunodeficiency diseases. Curr Opin Hematol. Jul 2008;15(4):375-80. [View Abstract]
  3. Sneller MC. Common variable immunodeficiency. Am J Med Sci. Jan 2001;321(1):42-8. [View Abstract]
  4. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. Jul 1999;92(1):34-48. [View Abstract]
  5. Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatr. Oct 2002;141(4):566-71. [View Abstract]
  6. Samson M, Audia S, Lakomy D, Bonnotte B, Tavernier C, Ornetti P. Diagnostic strategy for patients with hypogammaglobulinemia in rheumatology. Joint Bone Spine. May 2011;78(3):241-5. [View Abstract]
  7. Artac H, Kara R, Gokturk B, Reisli I. Reduced CD19 expression and decreased memory B cell numbers in transient hypogammaglobulinemia of infancy. Clin Exp Med. Jul 21 2012;[View Abstract]
  8. Ochs HD, Smith CIE, Puck JM. Primary Immunodeficiency Diseases: A Molecular & Cellular Approach. 2nd ed. USA: Oxford University Press; 2006.
  9. Orange JS, Hossny EM, Weiler CR, et al; Primary Immunodeficiency Committee of the AAAAI. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. Apr 2006;117(4 Suppl):S525-53. [View Abstract]
  10. Bonilla FA, Bernstein IL, Khan DA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1-63. [View Abstract]
  11. Chouksey AK, Berger M. Assessment of protein antibody response in patients with suspected immune deficiency. Ann Allergy Asthma Immunol. Feb 2008;100(2):166-8. [View Abstract]
  12. Paris K, Sorensen RU. Assessment and clinical interpretation of polysaccharide antibody responses. Ann Allergy Asthma Immunol. Nov 2007;99(5):462-4. [View Abstract]
  13. Barroeta Seijas AB, Graziani S, Cancrini C, Finocchi A, Ferrari S, Miniero R, et al. The impact of TACI mutations: from hypogammaglobulinemia in infancy to autoimmunity in adulthood. Int J Immunopathol Pharmacol. Apr-Jun 2012;25(2):407-14. [View Abstract]
  14. Buckley R, ed. Immune Deficiency Foundation Diagnostic and Clinical Care Guidelines for Primary Immunodeficiency Diseases, 2nd ed. 2009. Accessed August 17, 2009. Immune Deficiency Foundation.
  15. Boztug K, Dewey RA, Klein C. Development of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome. Curr Opin Mol Ther. Oct 2006;8(5):390-5. [View Abstract]
  16. Raanani P, Gafter-Gvili A, Paul M, Ben-Bassat I, Leibovici L, Shpilberg O. Immunoglobulin prophylaxis in chronic lymphocytic leukemia and multiple myeloma: systematic review and meta-analysis. Leuk Lymphoma. May 2009;50(5):764-72. [View Abstract]
  17. Mechanic LJ, Dikman S, Cunningham-Rundles C. Granulomatous disease in common variable immunodeficiency. Ann Intern Med. Oct 15 1997;127(8 Pt 1):613-7. [View Abstract]
  18. Kainulainen L, Varpula M, Liippo K, Svedstrom E, Nikoskelainen J, Ruuskanen O. Pulmonary abnormalities in patients with primary hypogammaglobulinemia. J Allergy Clin Immunol. Nov 1999;104(5):1031-6. [View Abstract]
  19. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. Jan 29 2009;360(5):447-58. [View Abstract]
  20. Berger M. Principles of and advances in immunoglobulin replacement therapy for primary immunodeficiency. Immunol Allergy Clin North Am. May 2008;28(2):413-37, x. [View Abstract]
  21. Ballow M, O'Neil K. Approach to the patient with recurrent infections. In: Middleton E Jr, Reed CE, Ellis EF, Adkinson NF Jr, Yunginger JW, Busse WW, eds. Allergy: Principles & Practice. 5th ed. Mo: Mosby: St. Louis; 1998.
  22. Bjoro K, Haaland T, Skaug K. The spectrum of hepatobiliary disease in primary hypogammaglobulinaemia. J Intern Med. May 1999;245(5):517-24. [View Abstract]
  23. Bonilla FA, Geha RS. Primary immunodeficiency diseases. J Clin Immunol. 2003;111(2 Suppl):S571-81. [View Abstract]
  24. Bonilla FA, Geha RS. Update of primary immunodeficiency disease. J Clin Immunol. 2006;117(2):S435-41. [View Abstract]
  25. Carrol WL, Korsmeyer SJ. Immunoglobulins. In: Frank M, Austen K, Claman H, Unanue E, eds. Samter's Immunologic Diseases. 5th ed. Little, Brown and Company: Boston, Mass; 1995:33-51.
  26. Casulo C, Maragulia J, Zelenetz AD. Incidence of Hypogammaglobulinemia in Patients Receiving Rituximab and the Use of Intravenous Immunoglobulin for Recurrent Infections. Clin Lymphoma Myeloma Leuk. Dec 28 2012;[View Abstract]
  27. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. Apr 28 2000;288(5466):669-72. [View Abstract]
  28. Cooper N, Davies EG, Thrasher AJ. Repeated courses of rituximab for autoimmune cytopenias may precipitate profound hypogammaglobulinaemia requiring replacement intravenous immunoglobulin. Br J Haematol. Jun 2009;146(1):120-2. [View Abstract]
  29. Latiff AH, Kerr MA. The clinical significance of immunoglobulin A deficiency. Ann Clin Biochem. Mar 2007;44(Pt 2):131-9. [View Abstract]
  30. Li James TC. Immunoglobulin structure and function. In: Middleton E Jr, Reed CE, Ellis EF, Adkinson NF Jr, Yunginger JW, Busse WW, eds. Allergy: Principles & Practice. 5th ed. Mo: Mosby: St. Louis; 1998:46-57.
  31. Pasternack M. Approach to the adult with recurrent infections. UpToDate. Available at http://www.uptodate.com. Accessed October 8, 2007.
  32. Priary Immunodeficiency Resource Center. National Primary Immunodeficiency Resource Center. Available at http://info4pi.org. Accessed October 8, 2007.
  33. Smith JK, Krishnaswamy GH, Dykes R, Reynolds S, Berk SL. Clinical manifestations of IgE hypogammaglobulinemia. Ann Allergy Asthma Immunol. Mar 1997;78(3):313-8. [View Abstract]
  34. Stiehm ER. Immunologic Disorders in Infants and Children. 4th ed. WB Saunders Co; 1996.
  35. Tsiodras S, Samonis G, Keating MJ, Kontoyiannis DP. Infection and immunity in chronic lymphocytic leukemia. Mayo Clin Proc. Oct 2000;75(10):1039-54. [View Abstract]
  36. World Health Organization Scientific Group. Primary immunodeficiency diseases. Report of a WHO scientific group. Clin Exp Immunol. Aug 1997;109 Suppl 1:1-28. [View Abstract]