Allergic and Environmental Asthma

Back

Overview

Asthma is a clinical syndrome characterized by episodic reversible airway obstruction, increased bronchial reactivity, and airway inflammation. Asthma results from complex interactions among inflammatory cells, their mediators, airway epithelium and smooth muscle, and the nervous system. In genetically susceptible individuals, these interactions can lead the patient with asthma to symptoms of breathlessness, wheezing, cough, and chest tightness.

Causes or triggers of asthma can be divided into allergic and nonallergic etiologies. Aeroallergens can include seasonal pollen, mold spores, dust mites, and animal allergens.

Nonallergic causes of asthma can include smoke, odors, cold air and weather, chemicals, medications (eg, aspirin and other nonsteroidal anti-inflammatory drugs [NSAIDs)], beta-blockers), exercise, hormonal changes (eg, pregnancy, menstrual cycle), and bisulfite food additives.

Co-morbidities of asthma include sinusitis, nasal polyposis, gastro-esophageal reflux disease (GERD) and allergic rhinitis.

Genetic differences may alter susceptibility to asthma, as well as responsiveness to asthma medications.[1] Significant genetic variation exists between and within racial and ethnic groups, but the issue is confounded by important coexisting economic, cultural, and environmental differences, including geography (place of birth).[2]

Go to Pediatric Asthma, Status Asthmaticus, Exercise-Induced Asthma, and Asthma in Pregnancy for complete information on these topics.

Asthma-associated economic costs

In the United States, asthma is annually responsible for 1.5 million emergency department visits, 500,000 hospital admissions (third leading preventable cause), and 100 million days of restricted activity. Medical expenses, as well as lost work and productivity, cost an estimated $81.9 billion in 2013.[3] In Western countries, the financial burden on patients ranges from $300 to $1,300 per patient year, increasing with more severe disease. When indirect costs are added, total economic burden will be $963.5 billion over next decade.[4]  

Worldwide, economic costs for asthma are more than those for tuberculosis and acquired immunodeficiency syndrome (AIDS) combined. Cost is associated with disease severity[5] ; more than half of all expenditures are attributed to the 10-20% of patients with the most severe disease.

Asthma risk factors

Risk factors for asthma include a family history of allergic disease, the presence of allergen-specific immunoglobulin E (IgE), viral respiratory illnesses, exposure to aeroallergens, cigarette smoke, obesity, and lower socioeconomic status.

A study by Zhang et al suggests that those children who are genetically predisposed to asthma may be at an even higher risk if they are overweight beyond infancy.[6]

Data from the Prevention of Allergy: Risk Factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) Study and the Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community Advanced (GABRIELA) reinforce the concept of the hygiene hypothesis.[7] Using a cross-sectional design, the authors compared children living on farms to those in a reference group with respect to the prevalence of asthma and to the diversity of microbial exposure. The studies found that children who lived on farms had a lower prevalence of asthma and atopy and were exposed to a greater variety of environmental microorganisms than children in the reference group. The diversity of microbial exposure was inversely related to the risk of asthma (odds ratio for PARSIFAL, 0.62; 95% confidence interval [CI], 0.44-0.89; odds ratio for GABRIELA, 0.86; 95% CI, 0.75-0.99).

A more recent study looked at asthma risk and innate immunity in Amish and Hutterite children who live on traditional and industrialized farms, respectively. The prevalence of asthma and allergic sensitization was 4 and 6 times lower in the Amish population, with higher median endotoxin levels in house dust. There were also significant differences in microbial composition in dust samples and in innate immune cells between the two groups of children. The study suggested a protective effect of an Amish environment against the development of asthma.[8]   

Allergy-associated asthma

Environmental exposure in sensitized individuals is a major inducer of airway inflammation, which is a hallmark finding in the asthmatic lung. Although triggers induce inflammation through different pathways, the resulting effects all lead to increased bronchial reactivity.

The importance of allergy in asthma has been well established. For example, exposure to dust mites in the first year of life is associated with later development of asthma and, possibly, atopy. Mite and cockroach antigens are common, and exposure and sensitization have been shown to increase asthma morbidity.

Allergies trigger asthma attacks in 60-90% of children and in 50% of adults. Approximately 75-85% of patients with asthma have positive (immediate) skin test results. In children, this sensitization is associated with disease activity.

Although most people with asthma have aeroallergen-induced symptoms, some individuals manifest symptoms with nonallergic triggers. About 3-10% of people with asthma are sensitive to NSAIDs. Approximately 5-10% of people with asthma have occupation- or industry-induced airway disease. Many individuals develop symptoms after viral respiratory tract infections.

Allergen avoidance and other environmental control efforts are feasible and effective. Symptoms, pulmonary function test findings, and airway hyperreactivity (AHR) improve with avoidance of environmental allergens. Removing even 1 of many allergens can result in clinical improvement. However, patients frequently are not adherent with such measures.

Etiology of allergy-related Asthma

The etiology of asthma is likely multifactorial. Genetic factors may control individual predispositions to asthma. Genetics may also be associated with responses to medications. Variation in the beta-adrenergic receptor gene of the Arg-Arg type has been associated with impaired responses to inhaled, short-acting beta-agonist inhalers.

Genetics alone, however, cannot account for significant increases in asthma prevalence (see Epidemiology, below), as genetic factors take several generations to develop, and asthma and atopy are not always co-inherited.

One theory to explain the increased prevalence of allergic disease is that, with fewer infectious stimuli in the environment, the in utero TH 2 allergic cytokine state never switches to the TH 1 state.

Description of the allergic response

The allergic response in the airway is the result of a complex interaction of mast cells, eosinophils, T lymphocytes, macrophages, dendritic cells, and neutrophils. More recently discovered is the type 2 innate lymphoid cell (ILC2), which is a type of innate lymphoid cell implicated in inflammatory pathways in asthma. Inhalation-challenge studies with allergens reveal an early allergic response (EAR), which occurs within minutes and peaks at 20 minutes, following inhalation of the allergen.

Clinically, the manifestations of the EAR in the airway include bronchial constriction, airway edema, and mucus plugging. These effects are the result of mast cell–derived mediators. Four to 10 hours later, a late allergic response may occur, which is characterized by infiltration of inflammatory cells into the airway and is most likely caused by cytokine-mediated recruitment and activation of lymphocytes and eosinophils.

Antigen-presenting cells (ie, macrophages, dendritic cells) in the airway capture, process, and present antigen to helper T cells, which, in turn, become activated and secrete cytokines. Helper T cells can be induced by cytokines to develop into TH 1 (ie, by interferon-gamma, interleukin [IL]–2) or TH 2 (ie, by IL-4, IL-5, IL-9, IL-13) cells. Regulatory T cells (Treg) appear to play an important role in TH 2-cell response to allergens. Allergens drive the cytokine pattern toward TH 2, which promotes B-cell IgE production and eosinophil recruitment.

Subsequently, IgE binds to the high-affinity receptor for IgE, Fc-epsilon-RI, on the surface of mast cells and basophils. Upon subsequent exposure to the allergen, the IgE is cross-linked. This leads to degranulation of the mast cell and basophil. Preformed mast-cell mediators, such as histamine and proteases, are released, leading to the EAR.

Newly formed mediators, such as leukotriene C4 and prostaglandin D2, also contribute to the EAR.

Proinflammatory cytokines (IL-3, IL-4, IL-5, tumor necrosis factor-alpha [TNF-α]) are released from mast cells and are generated de novo after mast-cell activation. These cytokines contribute to the late allergic response by attracting neutrophils and eosinophils. The eosinophils release major basic protein, eosinophil cationic protein, eosinophil-derived neurotoxin, and eosinophil peroxidase into the airway, causing epithelial denudation and exposure of nerve endings.

The lymphocytes that are attracted to the airway continue to promote the inflammatory response by secreting cytokines and chemokines, which further potentiate the cellular infiltration into the airway.

The ongoing inflammatory process eventually results in hypertrophy of smooth muscles, hyperplasia of mucous glands, thickening of basement membranes, and continuing cellular infiltration. These long-term changes of the airway, referred to as airway remodeling, can ultimately lead to fibrosis and irreversible airway obstruction in some, but not most, patients.

Phenotypes of asthma

In the past decade there have been significant advances in the phenotypic classification of asthma. Asthma can be viewed as a Type 2 (T2 high) subtype, which implicates signaling of IL-4, IL-13, Il-5, IgE and other inflammatory cascade pathways. Proposed biomarkers of T2 asthma include serum IgE, blood and lung eosinophils, exhaled nitric oxide, and others.  Allergic asthma is considered a T2-high form of asthma. Less is known about non-T2 asthma, but it is marked by the absence of these biomarkers. Asthma can also be broadly categorized as eosinophilic versus non-eosinophilic. Asthmatics with eosinophilic disease may have very high levels of eosinophils in the blood and/or sputum. Asthma-COPD Overlap (ACO) is also an overlap phenotype seen in patients with clinical features of both asthma and COPD.

Epidemiology of asthma

Prevalence in the United States

The general prevalence of asthma is difficult to determine, because definitions and survey methods vary, but the incidence of the condition appears to be on the rise. The disease’s prevalence has been estimated as 10.9%, with asthma affecting more than 22 million people, including more than 6 million children.[9, 1]  Ongoing birth cohort studies may help us develop a better understanding of prevalence in the future.

International prevalence

Global Initiative for Asthma (GINA) researchers noted that, with regard to asthma in general, there have been increases in prevalence, morbidity, mortality, and economic burden over the past 40 years, especially in children.[9] Asthma affects more than 300 million people worldwide, and some reports suggest that asthma prevalence is increasing by 50% every decade.[9]

The highest recorded prevalences of asthma outside North America are in the United Kingdom (>15%), New Zealand (15.1%), and Australia (14.7%).[10]

Asthma-associated morbidity and mortality

In the United States, mortality from asthma in general has increased, especially in children who live in inner-city areas, despite advances in disease understanding and therapy. The number of asthma-related deaths annually in the United States decreased from 5067 (1960–1962) to a low of 1870 (1975–1978), and then increased to 5429 (1993–1995). There has been a significant decline in asthma mortality in the past two decades.[11]   

Hospitalization and death rates are 50% higher for African American adults than white adults and 150% higher in children.

Worldwide, approximately 180,000 deaths annually are attributed to asthma; most deaths occur in persons older than age 45 years.

Increased morbidity is multifactorial; morbidity may be increased by increased exposure to indoor allergens, less exposure to viral infections early in life, more environmental pollution, overuse of short-acting beta-2 agonists, underuse of anti-inflammatory medications, and limited access to or education about health care.

Sex predilection

Boys have been shown to be at greater risk for asthma than girls. In children younger than 14 years, the prevalence of asthma is twice as high in boys as it is in girls.

This difference narrows with age, however; women aged 40 years have a greater prevalence of asthma than do men of the same age.

Age predilection

Disease onset can occur in people of any age, but children often present when younger than 6 years. Asthma is one of the most common chronic diseases of childhood.[12, 13]

Patient History

All patients should be asked about or should undergo assessment regarding exacerbation of asthma symptoms.

Allergy-related asthma

Assessments should be made regarding the following, when examining symptom exacerbation patients with perennial asthma symptoms:

It should be determined whether the patient’s symptoms worsen after the patient vacuums rugs (a typical sign of dust mite allergen).

Assessments should be made with regard to the following, when looking at symptom exacerbation in patients with seasonal asthma symptoms (which may extend beyond 1 season in temperate or tropical climates):

Environmentally related asthma

Assessments should be made regarding the following, when looking at symptom exacerbation in patients who may have environmentally related asthma:

Physical Examination

Physical examination findings are often normal.

Head and neck

Nasal mucosal swelling, discharge, polyps, or sinus percussion tenderness may suggest associated allergic rhinitis or sinusitis. Wheezing heard only or mostly over the neck may suggest vocal cord dysfunction (VCD) or other laryngeal abnormality, although VCD can be present without a localizing wheeze. Increased jugular venous distension may point to an alternative explanation, such as heart failure, for the patient’s dyspnea and wheezing. Similarly, palpation of cervical or supraclavicular adenopathy would suggest malignancy, sarcoidosis, or infection.

Cardiovascular system

Findings are normal. Patients with status asthmaticus may have a pulsus paradoxus greater than 10 mm Hg. A murmur, S3 gallop, or rub suggests a cardiac problem and not asthma.

Respiratory system

During an acute asthma exacerbation, lung examination findings may include wheezing, rhonchi, hyperinflation, or a prolonged expiratory phase. With severe disease, lung auscultation may reveal absent breath sounds (indicating poor air movement) or signs of respiratory distress and failure (eg, nasal flaring, grunting, accessory muscle use, cyanosis). Focal wheezing may indicate foreign body or other airway obstruction, such as a tumor.

Skin

Check the patient for atopic dermatitis.

Extremities

Extremity exam is typically normal in asthma. Digital clubbing and/or edema should not be present. If edema is found, this suggests right- or left-sided heart failure.

Differential Diagnosis

Conditions that can mimic the symptoms of asthma include the following:[14]

Alpha1-Antitrypsin Deficiency

Aspergillosis

Bronchiolitis

Bronchitis

Chronic Bronchitis

Congestive Heart Failure and Pulmonary Edema

Emphysema

Foreign Body Aspiration

Immunoglobulin G Deficiency

Mixed Connective-Tissue Disease

Polymyositis

Pulmonary Embolism

Sarcoidosis

Sinusitis, Chronic

Undifferentiated Connective-Tissue Disease

Vascular Rings

Vocal Cord Dysfunction

In children and young adults, the following conditions can also have symptoms similar to those of asthma:

In adults, the following conditions can also mimic asthma:

With regard to the last item above, reactive airways dysfunction syndrome is a distinct entity caused by exposure to a single, large, inhaled agent (i.e. chlorine or acute smoke inhalation) leading to asthma symptoms within 24 hours and lasting 3 months or longer.

Elderly patients frequently have medical conditions that can mimic asthma.

Pulmonary Function Tests

Symptom improvement with asthma therapy is suggestive, but not diagnostic, of asthma. Symptoms alone do not necessarily reflect asthma severity. Infants may be treated empirically. In patients older than 5 years, however, objectively demonstrating reversible airflow obstruction with pulmonary function tests, if possible, is essential.

Go to Peak Flow Rate Measurement for complete information on this topic.

Obstruction ratio

Obstruction is defined as a ratio of less than 70% of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC). FEV1 is normally greater than 80% of values predicted by age. However, some have suggested alternative methods of defining obstruction in pulmonary tests.[15, 16]

Young patients with a supranormal FVC can sometimes have a reduced FEV1/FVC ratio without having obstructive lung disease. Reversibility can be shown by administering a short-acting beta-2 agonist inhaler with a resultant 12% and more than 200-mL improvement in FEV1 or FVC.[17] If no response occurs, 2-3 weeks of oral or inhaled corticosteroids (20 mg twice daily for the average patient) may be required to demonstrate an improvement in airflow. Note that airflow obstruction in some patients with chronic obstructive pulmonary disease may be partially reversible.

Relative annual risk of exacerbations may be related to FEV1. A 15% drop in FEV1 after 6 minutes of running or other exercise can be diagnostic of exercise-induced bronchospasm. A 20% variation in the peak expiratory flow rate (PEFR) between high and low values is highly suggestive of asthma, but formal pulmonary function testing (as above) is recommended, because the PEFR is extremely effort-dependent.

Laboratory Tests

Skin tests

Skin testing is one of the most useful ways of determining specific allergen sensitivity. Such tests for allergen-specific IgE are necessary if the clinician is to provide informed advice to patients about allergen avoidance techniques; they are also necessary for planning allergen immunotherapy regimens.

Skin tests have the advantage of being immediately available and visible to patients, which may reinforce to patients the need for environmental control and, possibly, immunotherapy.

Skin testing is recommended for antigens to which the patient is exposed rather than testing with a standard panel. Skin test findings have a fairly high false-positive rate but a very good negative predictive value. Thus, a positive test result does not mean that a patient is currently being exposed to an allergen or that he or she will react to it in a natural exposure. A negative test result generally rules out the possibility that an allergen is having an impact on the patient’s asthma.[18]  It is important to determine if a positive test result is clinically relevant (history of symptoms with exposure/timing).

Antihistamine medications and tricyclic antidepressants (TCAs) interfere with allergy skin testing; short courses of oral glucocorticoids at moderate doses do not.

Testing should not be performed during an asthma exacerbation, and the testing site should be equipped for the treatment of rare, life-threatening reactions.

Skin testing is performed with controls (eg, histamine and saline) to avoid false-positive (dermatographism) or false-negative results. Identification of allergen triggers can assist in formulating an environmental control strategy, titration of therapy (ie, seasonal exacerbation), or an immunotherapy regimen.

Blood tests

Blood tests (in vitro) for allergen-specific IgE, such as ImmunoCAP, may be used in place of skin testing if dermatologic disease is generalized, if antihistamine or TCA use cannot be suspended (which affects skin testing but not in vitro testing), or if skin testing is relatively contraindicated. However, skin testing is more specific, more sensitive, and usually less expensive than in vitro testing.

The serum IgE level is elevated only approximately half the time in patients with allergic disease. Obtaining an IgE level is not indicated in most patients with asthma, although levels greater than 1000 ng/mL (1 IU= 2.4 ng) may suggest an alternate diagnosis, such as allergic bronchopulmonary aspergillosis. Confounding illness, such as atopic dermatitis, may also result in high IgE levels. IgE levels are also important in tandem with proof of perennial allergic sensitization when considering the addition of omalizumab (anti-IgE).

Serum eosinophil counts may be useful if considering using anti-IL5 biologic agents (mepolizumab, reslizumab, and benralizumab). Other tests, which are not commercially available, have been looked at, such as serum periostin and enterotoxin-specific IgE. A study that explored immunological determinants associated with severe refractory asthma found that the mean level of enterotoxin-specific IgE was 3-fold higher in patients with severe asthma compared with patients with nonsevere asthma (P = 0.01).[19] It was also significantly associated with low respiratory function parameters (FEV1, FEV1/FVC, and MEF 25/75) and increased airway reversibility in response to albuterol. This suggests a role for staphylococcal enterotoxins in the asthma pathogenesis

Eosinophilia tests 

With the introduction of anti-IL5 agents, measuring an absolute esoniophilc count is useful in helping to phenotype severe asthma and identify potential candidates for targeted therapies. Most institutions do not have the availability of sputum eosinophil measurements.

Decrease in sputum eosinophilia may suggest asthma control or responsiveness to inhaled steroids. However, a study of 50 patients with allergic asthma found no significant correlation between sputum eosinophils measured 7 and 24 hours after bronchoprovocation and early or late bronchoconstrictor responses.[20]

Note that a finding of greater than 1000 eosinophils per microliter of peripheral blood can indicate parasitic infestation, drug allergies, or eosinophilic pulmonary disorders, such as allergic bronchopulmonary aspergillosis or Churg-Strauss syndrome.

Staining nasal secretions with Hansel stain is sometimes used to assess for nasal eosinophilia, but the sensitivity and specificity of this stain are low.

Exhalation tests

Exhaled nitric oxide (eNO) levels correlate with eosinophilic airway inflammation and are reduced by corticosteroid therapy. However, in a large, randomized trial of inner-city adolescent asthma patients, using eNO to guide medication decisions resulted in higher doses of inhaled corticosteroids being given without clinically important improvements in symptomatic asthma control.[21]

Exhaled breath condensate and exhaled breath temperature are also novel biomarkers that have been studied.

Brain natriuretic peptide tests

In older patients, an elevated serum brain natriuretic peptide (BNP) level may help to indicate heart failure as a primary or contributing cause of dyspnea and wheezing.

Bronchoprovocation

An asthma specialist can perform bronchoprovocation testing with exercise, histamine, methacholine, or eucapnic voluntary hyperventilation. The results from these tests have a very high negative predictive value and are useful for excluding the diagnosis of asthma.

The most common challenge is with increasing doses of inhaled methacholine. A 20% decline in FEV1 with a methacholine concentration of 8 mg/mL or less is considered a positive (abnormal) test result. This testing should be avoided during pregnancy, because of the risk of precipitating an asthma attack and because methacholine is a class C drug (ie, fetal risk revealed in studies in animals but not established or not studied in humans; may use if benefits outweigh risk to fetus).

Chest Radiographs

These are taken only if pneumonia, large airway lesions, or heart failure is suggested; if symptoms are atypical or refractory to therapy; if the patient has unilateral or focal wheezing; or if the patient has new adult-onset asthma symptoms.

Go to Imaging in Asthma for complete information on this topic.

Modified or Limited Sinus CT Scans

Consider computed tomography (CT) scans of the sinuses if chronic sinusitis is suggested. About 65% of people with severe asthma have concomitant sinusitis.

Chest CT Scans

These are indicated in select patients to help exclude interstitial lung disease, bronchiectasis, bronchiolitis, or infection.

Echocardiograms

These are performed if congestive heart failure is suggested based on history and physical examination findings.

Allergen-Inhalation Tests

Allergen-inhalation challenges can be performed in selected patients but are generally not needed or recommended. This test requires an available allergen solution and specialized centers able to handle potentially significant reactions. A negative test finding may allow continued exposure to an allergen (eg, family pet); a positive test finding can dramatically indicate that the patient should avoid a particular allergen. This test is often needed to help diagnose occupational asthma.

Additional Tests

A trial of allergen avoidance may be diagnostic and therapeutic, but because it is difficult or impossible to avoid most allergens completely, failure to improve with an attempt at allergen avoidance cannot rule out the presence of an allergy to those allergens.

Treatment Goals

The goals of treatment are to minimize symptoms, improve quality of life, decrease the need for urgent care or hospitalizations, normalize pulmonary function test results, and decrease the inflammatory process that leads to airway remodeling.

Pharmacotherapy

The most important facet of medical care is the use of anti-inflammatory medications (usually, inhaled corticosteroids) in patients at all stages beyond mild intermittent asthma. Even the use of such medications in children improves many outcomes, including quality of life, although it does not, as had initially been hypothesized, appear to affect the natural history of the disease.[22, 23, 24, 25]  First-line agents for allergic rhinitis include intranasal corticosteroids and antihistamines. Long-acting oral antihistamine agents and intranasal antihistamine sprays are available. Additionally, blocking the leukotriene pathway with agents like montelukast may be beneficial in the management of allergic rhinitis and asthma.

These medications do not appear to cause significant adverse effects at moderate doses (eg, on growth, bone density, eyes, adrenal sufficiency). Unfortunately, in some series, fewer than half of the patients admitted to the hospital for asthma were receiving or taking their recommended anti-inflammatory medications (this was likely an issue of adherence as well as prescription).

The safety of long-acting beta agonists had been questioned because of SMART (the Salmeterol Multicenter Asthma Research Trial). In this study, which involved approximately 25,000 patients, respiratory- and asthma-related deaths were greater in the group that received salmeterol than in the placebo group (although this signal was statistically significant only in African Americans).[26]

A combination of an inhaled corticosteroid and long-acting beta agonist (STAY trial, using budesonide/formoterol[27] ) for maintenance and reliever medication in patients with moderate to severe asthma may lower the risk of severe exacerbations, reduce the need for systemic steroids, and improve symptoms, compared with a fixed maintenance dose of a similar medication or a 4-fold increase in the inhaled corticosteroid dose.[28] In patients with inadequately controlled severe allergic asthma who are receiving high-dose ICS and long-acting beta agonists, omalizumab provided additional clinical benefit.[29]

Elderly patients are more likely to experience adverse effects from asthma medications.

Note: In December 2008, an advisory panel to the FDA voted to ban 2 long-acting beta agonists (LABAs)---Serevent (salmeterol) and Foradil (formoterol)---as monotherapy (meaning by itself, without inhaled corticosteroids also) for treating asthma in adults and children.[30] This guidance will likely apply to other medications in the same class, such as arformoterol (Brovana).

Serevent and Foradil will remain on the market to treat chronic obstructive pulmonary disorders. The panel also voted to continue allowing the use of Symbicort (formoterol plus budesonide) and Advair (salmeterol plus fluticasone), as these drugs contain LABAs and steroids (as discussed above).

In February 2010, the FDA announced additional safety controls regarding the use of LABAs. As previously announced, these medications should never be used as monotherapy to treat asthma in children or adults. The additional safety controls also institute labeling requirements for manufacturers, including recommendations that LABAs, even as combination therapy, should be used for the shortest possible duration. For more information, see the FDA news release.[31]

In 2017, the FDA removed box warnings about the possibility of asthma-related death from asthma and COPD inhalers delivering fixed-dose combinations of ICS and LABA drugs. The removal comes after an FDA review of four large clinical safety trials which showed no increase in serious asthma-related side effects with the ICS/LABA fixed-dose products than with ICS agents alone.[32]

Go to Use of Metered Dose Inhalers, Spacers, and Nebulizers for complete information on this topic.

Environmental Control

Allergen avoidance takes different forms, depending on the specific allergen size and characteristics. Improvement in symptoms after avoidance of the allergen should result rather rapidly, although the allergen itself (eg, cat dander) may linger in the environment for months after primary removal of the source. A multifaceted approach is necessary, as individual interventions are rarely successful by themselves.

Efforts should focus on the home, where 30–60% of time is spent. Patients should clean and dust their home regularly. If a patient cannot avoid vacuuming, he or she should use a face mask or a double-bagged vacuum with a high-efficiency particulate air filter. 

Active smoking and exposure to passive smoke must be avoided. Room air ionizers have not been proven to be effective for people with chronic asthma, and the generation of ozone by these machines may be harmful to some. Specific factors related to the home are described below.

Guidelines on work-related asthma from the European Respiratory Society advocate exposure elimination as the preferred primary prevention approach, with reduction to exposure as the next best option. A screening and surveillance program should be established for workers at risk of asthma.[33]

Dust mites (Dermatophagoides pteronyssinus and farinae, size 30 µm)

The primary allergen associated with dust mites is an intestinal enzyme on fecal particles. The allergen settles on fabric because of its relatively large size; therefore, air filtration is not very effective.

Measures to avoid dust mites include using impervious covers (eg, on mattresses, pillows, comforters, the most important intervention), washing other bedding in hot water (the most effective temperature being 130°F [54.4°C]), removing rugs from the bedroom, limiting upholstered furniture, reducing the number of window drapery, and putting clothing away in closets and drawers. Other measures include minimizing the number of soft toys and either washing them weekly or periodically putting them in the freezer. Decreasing room humidity (< 50%) is another means of reducing exposure to avoid dust mites.

Conclusions from a Cochrane Review study indicated that acaricides and extensive, bedroom-based environmental control programs may help to reduce rhinitis symptoms. If such measures are considered appropriate, they should be the interventions of choice. However, analysis also indicated that the isolated use of bedding that is impermeable to house dust mites is not likely to be effective in reducing rhinitis symptoms caused by dust mites.[34]

Cats and other animals (dander or saliva, urine, or serum proteins, size 1-20 µm)

Because of its small size, this allergen is predominantly an airborne, indoor type. Avoidance involves removing animals from the home (or at least from the bedroom), using dense filtering material over heating and cooling duct vents, and washing cats and dogs as often as twice weekly. Antigen may remain in a home for 6 months or more after cats are removed from the home, and cat antigen may be found in homes and offices where cats were never present, highlighting the importance of frequent cleaning.

Cockroaches (size 30 µm)

Twenty percent of homes without visible infestation still produce sensitizing levels of allergen. Successful allergen elimination measures are difficult, especially in poor living conditions. To control cockroaches, exterminate and use poison baits and traps, keep food out of the bedroom, and never leave food out in the open.

Indoor molds (size 1-150 µm)

Mold can be found in wet and damp areas, such as bathrooms and basements. Avoidance includes keeping areas dry (eg, removing carpets from wet floors), removing old wallpaper, cleaning with bleach products, storing firewood outdoors, and preventing further water intrusion.

Pollen (size 1-150 µm)

Avoidance is difficult or impossible, but efforts to reduce exposure include closing windows and doors; using air conditioning and high-efficiency particulate air filters in the car and home; staying inside during the midday and afternoon, when pollen counts are highest; wearing glasses or sunglasses; wearing a face mask over the nose and mouth when mowing the lawn; and, if possible, vacationing in a different ecosystem during pollen season.

Pollen may increase sensitivity to other airborne allergens, possibly because its protease enzymes make epithelial membranes more permeable by disrupting their transmembrane adhesion proteins, according to a European study.[35]

Allergen Immunotherapy

The use of repeated injections of escalating doses of allergen is effective in treating allergic rhinitis, and positive effects may persist even years after treatment has been stopped. This treatment is also considered mandatory for life-threatening bee and wasp sting (hymenoptera venom) reactions.[36]

The role of repeated allergen injections in patients with asthma has been more controversial, ranging from a relative indication to no indication. Benefit has been shown in individuals with allergy-induced asthma.

Supporters of this treatment for asthma argue that compliance can be ensured, and evidence shows that the underlying disease process can be modified or even prevented (eg, preventing asthma in children with allergic rhinitis). The acquisition of new sensitivities can be reduced or eliminated with the use of immunotherapy in monosensitized or oligosensitized children.

In a 2003 meta-analysis of 75 randomized, controlled trials, Abramson et al reported that immunotherapy decreased asthma symptoms and the need for medication.[37] Another study showed improved PEFR and decreased use of medications in a highly selected group of children, but only for the first year of therapy.

Despite the fact that the cost may be $800 for the first year and $170 per year thereafter (1996 estimate), a study designed to evaluate the cost-effectiveness of subcutaneous immunotherapy (SCIT) in addition to symptomatic therapy (ST) compared with ST alone found that all patients receiving SCIT demonstrated improved medical outcomes and cost savings.[38]

Allergen immunotherapy should be considered if specific allergens have a proven relationship to symptoms; the individual is sensitized (ie, positive skin test or allergin-specific IgE findings); the allergen cannot be avoided and is present year-round (eg, industrial); or symptoms are poorly controlled with medical therapy, and a vaccine to the allergen is available. This treatment is especially useful if the asthma is associated with allergic rhinitis.

Referral to an allergist is required. The patient must commit to a course of 3–5 years of therapy (a trial of several months can be considered, although generally effect takes approximately a year to plateau).

Risks and precautions

Risks in allergen immunotherapy include serious adverse reactions (occurring in 1 per 30–500 people, usually within 30 min). The estimated crude annual death rate from this treatment is 0.7 deaths per million population. Uncontrolled asthma is a major risk factor for immunotherapy-related death; therefore, appropriate caution should be exercised.

Monitoring and resuscitation personnel and equipment are required in allergen immunotherapy.

Allergen immunotherapy should be avoided if the patient is taking beta blockers or is having an asthma exacerbation (ie, PEFR < 70% of patient’s personal best) or has moderate or worse fixed obstruction.

Dosing

Dosing of allergen extracts is in bioequivalent allergy units (BAU), weight per volume (w/v), or protein nitrogen units (PNU), but "major allergen content" may be a more standardized and reliable method of dosing and for characterizing allergen extracts; however, not all allergens have been standardized.

Extracts with modifications that decrease allergenicity (adverse reactions) without reducing immunogenicity (effectiveness) are under investigation.

Sublingual immunotherapy

Sublingual immunotherapy has been shown to improve allergic rhinitis symptoms (including in pediatric patients) and allergic asthma. While adverse reactions do occur, sublingual immunotherapy is safe enough for home administration. Based on limited data, sublingual therapy, at least in the short term, may be less effective compared to traditional subcutaneous injection.[39]

SL immunotherapy may not be appropriate for everyone. Those affected by multiple allergens may not obtain relief of all of their symptoms by taking immunotherapy for only a single or several allergens. SL immunotherapy is more convenient than weekly injections for individuals with limited, specific allergies that match the SL product.

In April 2014, the FDA approved an SL tablet consisting of 5 calibrated grass pollen extracts (Oralair). It is indicated as immunotherapy for grass pollen-induced allergic rhinitis confirmed by positive skin test or in vitro testing for grass pollen-specific IgE antibodies in patients aged 5–65 years. It contains Perennial Ryegrass (Lolium perenne), Kentucky bluegrass (Poa pratensis), Timothy grass (Phleum pratense), Orchard grass (Dactylis glomerata), and Sweet Vernal grass (Anthoxanthum odoratum). The Oralair SL tablet needs to be initiated 4 months prior to the season for the specific allergen.

A second SL immunotherapy for Timothy grass (Grastek) was also approved in April 2014 for adults and children aged 5 years or older. It should be initiated at least 12 weeks before the start of the grass pollen season. Efficacy and safety in North America was established in a large study (n=1500) of adults and children aged 5-65 years. Results showed a 23% improvement of symptoms in the entire grass pollen season.[40]

A third SL immunotherapy for ragweed (Ragwitek) was also approved in April 2014 for adults aged 18 years or older. Effectiveness studies included about 760 patients. Phase 3 clinical trials showed reduced rhinoconjunctivitis symptoms over the entire season by 27-43% compared with placebo.[41, 42]

A sublingual (SL) house dust mite immunotherapy (Odactra) was approved by the FDA in 2017. It is a standardized allergen extract indicated as daily SL immunotherapy for allergic rhinitis, with or without conjunctivitis, confirmed by in vitro testing for IgE antibodies to Dermatophagoides farinae or Dermatophagoides pteronyssinus house dust mites, or skin testing to licensed house dust mite allergen extracts.

The first dose must be given in a healthcare setting under the supervision of a physician with experience in diagnosis and treatment of allergic diseases. Patient monitoring for signs or symptoms of a severe systemic or local allergic reaction is required following administration. Life-threatening allergic reactions are described in a boxed warning within the prescribing information. The boxed warning also includes the need to prescribe autoinjectable epinephrine for the patient to have while using sublingual immunotherapy.

Approval was based on a double-blind, multicenter trial (n = 1482) in adolescents and adults with HDM allergic rhinitis with or without conjunctivitis (AR/C). Over a 52-week period, HDM immunotherapy improved rhinoconjunctivitis score and visual analog scale-assessed AR/C symptoms (P < 0.001).[43]

 

Biologic Agents

Omalizumab (Xolair) was approved by the FDA in 2003 for use in adults and adolescents (≥12 years) with persistent, moderate to severe asthma who have a positive skin-test result or in vitro reactivity to a perennial aeroallergen and whose symptoms are inadequately controlled with inhaled corticosteroids. In 2016, its indication was expanded to include patients 6 years of age and older. It is generally used for patients with elevated serum IgE levels and evidence of perennial allergy. However, more recent studies suggest that there may be other biomarkers that predict therapeutic response (add Hanania reference). Omalizumab is given by subcutaneous injection every 2–4 weeks based on initial serum IgE level and body weight.

Omalizumab is a humanized murine IgG antibody against the Fc component of the IgE antibody (the part that attaches to mast cell surfaces). Use of this antibody prevents IgE from binding directly to the mast cell receptor, thereby preventing cell degranulation without causing degranulation itself.

Multiple phase 3 trials show that, compared with placebo injections, treatment is associated with larger median inhaled steroid dose reduction (83% vs 50%), a higher percentage of discontinuation of inhaled steroids (42% vs 19%), and fewer asthma exacerbations (approximately 15% vs 30%). Quality of life and the use of rescue inhalers and emergency departments may also be improved. Omalizumab has been shown to reduce the number of asthma exacerbations. Studies have shown that omalizumab decreases steroid burden while increasing lung function and quality of life when combined with inhaled corticosteroid treatment in patients younger than 12 years with moderate-to-severe asthma.[44, 45]

Prescribers must be prepared and equipped to recognize and treat anaphylaxis should it occur (0.1% in studies and 0.2% in postmarketing surveillance). Guidelines are evolving, but recommendations advise observation of patients for 2 hours after the first 2 injections and then for 30 minutes for injections thereafter. Reactions have been reported 4 days later. Patients must carry self-injectable epinephrine kits.

Other adverse effects are rare and include upper respiratory infection symptoms, headache, and urticaria (2%) without anaphylaxis. Transient thrombocytopenia has also been noted but not in humans.

Antibodies are formed against the anti-IgE antibody, but these do not appear to cause immune-complex deposition or other significant problems. To date, decreased IgE levels have not been shown to inhibit a patient’s ability to fight infection (including parasites). Registration trials raised a question of increased risk of malignancy, but this has not been seen in the postmarketing data.

The EXCELS trial (Evaluating the Clinical Effectiveness and Long-Term Safety in Patients with Moderate to Severe Asthma) led to the addition of warnings related to potential cardiovascular risks.[46]

Newer biologic agents have entered the market in recent years. These include anti-eosinophilic agents (mepolizumab, reslizumab, and benralizumab). In patients with an eosinophilic subtype, addition of these agents has been shown to reduce severe asthma exacerbations. The newest biologic to be approved for asthma is dupilumab, which works by blocking IL-4 and IL-13 pathways. These agents have shown efficacy in patients with severe refractory asthma, with a favorable side effect profile.

Additional Treatment Considerations

All patients should receive assistance with smoking cessation. While smoking cessation is essential for numerous reasons, it particularly appears to increase corticosteroid responsiveness in patients with asthma.

All patients should receive an annual flu shot. A pneumococcal pneumonia vaccination is not required unless indicated based on age (ie, >65 y). Asthma symptoms do not increase after these shots, because the antigens in the vaccinations are not alive.

Evaluating and treating patients for associated conditions (eg, rhinitis, sinusitis, gastroesophageal reflux disease [GERD]) can be important components of therapy. In one study, treating the GERD symptoms of patients with asthma with a proton pump inhibitor for 6 months reduced asthma exacerbations and improved quality of life but did not improve asthma symptoms or pulmonary function or reduce albuterol usage.[47]

Control Assessment

Signs of well-controlled asthma include the following:

Recommended actions in patients with well-controlled asthma include maintenance of current step, continuation of regular follow-up (every 1-6 mo), and consideration of step down if the asthma remains well controlled for at least 3 months.

Signs that asthma has not been well controlled include the following:

Recommended actions when asthma has not been well controlled include stepping up 1 step, reevaluating the patient in 2-6 weeks, and considering alternative treatment options if adverse effects occur with therapy.

Indications of very poorly controlled asthma include the following:

Recommended actions when asthma is under very poor control include considering a short course of oral systemic corticosteroids, stepping up 1-2 steps, reevaluating the patient in 2 weeks, and considering alternative treatment options if adverse effects occur with therapy.

In 2-6 weeks, in poorly controlled cases, evaluate the level of asthma control that has been achieved and adjust therapy accordingly. Review adherence to medications, inhaler technique, environmental control, and comorbid conditions. A progressive loss of lung function and the adverse effects of medication should also be included in the overall assessment of risk.

Assessment tests

Several published, but proprietary, questionnaire instruments may be useful in assessing asthma control. Such validated questionnaires include the Asthma Control Questionnaire (ACQ), the Asthma Therapy Assessment Questionnaire (ATAQ), and the Asthma Control Test (ACT). Low scores (3-4 in ATAQ or ≤15 in ACT) indicate poor control.

Asthma-Related Consultations

Consult a pulmonologist, allergist/immunologist, or both for any of the following:

Appropriate referral is needed if significant psychologic, social, or family problems are present.

Dietary Considerations

Aside from avoiding known food allergens or additives, diet is not restricted beyond recommendations for patients with concomitant GERD.

Activity-Related Considerations

Maintaining physical activity and exercise is essential to avoid deconditioning. Susceptible individuals should decrease outdoor activity during midday and afternoon when pollen counts are highest. A short-acting beta-2 agonist can be used 15–30 minutes before exercise if needed.[48]

Several studies have demonstrated that regular aerobic conditioning and weight loss may improve airway physiology and patients' sense of dyspnea.[49, 50]

Hospital Admission

Consider admission to a hospital if the patient develops refractory symptoms with a marked decrease in spirometry or borderline oxygenation. Intravenous or oral corticosteroids (3- to 10-d course) may be required.

A reduced forced expiratory volume in 1 second (FEV1) or peak expiratory flow rate (PEFR) to less than 50% of the patient’s personal best, normocapnia or hypercapnia, severe symptoms, or mental status changes warrants admission to an intensive care unit (ICU).

If the patient responds to therapy, examination findings are normal 1 hour after the last medication dose, and the FEV1 or PEFR is >70% of patient’s personal best, consider discharging the patient home on therapy to include oral steroids and scheduling a follow-up visit within 1 week.

Outpatient Care

Consider arranging a home visit to screen for environmental exposures and assess compliance with avoidance measures. According to a randomized, controlled evaluation of community health worker intervention with African American children hospitalized for asthma, the presence of an asthma coach can reduce hospitalization.[51]

Treatment Concerns

Patients dependent on oral glucocorticoids

These individuals should be referred to a specialist. The goal is the lowest possible oral glucocorticoid dose for the shortest possible duration. Patients must be screened and then referred or treated for complications, such as cataracts (optometry/ophthalmology screening annually) and osteoporosis (bone densitometry, supplemental calcium, and vitamin D at a minimum, if not contraindicated).

Excluding problems that can mimic asthma, such as VCD in "refractory" glucocorticoid-dependent cases, is important. A truncated inspiratory flow-volume loop on pulmonary function tests suggests possible VCD with corroboratory adduction of the vocal cords during inspiration.

Patients on long-acting beta agonists

Patients taking LABAs should receive concomitant inahled corticosteroids.

Infants and children younger than 4 years

Pulmonary function testing is difficult to perform in children below age 4 years, because cooperation can be limited and reference ranges are not standardized. Fewer medications have been studied and approved for patients in this age group.

Elderly patients

These patients frequently have other medical diseases that can mimic asthma, and they are more likely to experience adverse effects from asthma medications.

Comorbid conditions in the elderly such as allergic rhinitis may be under-recognized and under-treated.

Pregnant patients

Asthma affects up to 8% of pregnant women, and these patients should be treated similarly to, and possibly even more aggressively than, other patients, given the detrimental effects of hypoxia on maternal and fetal outcomes. During pregnancy, airway hyperreactivity (AHR) generally is stable to improved 69% of the time and worse 31% of the time.

Theophylline may be associated with drug toxicity in the newborn because of poor clearance.

Beclomethasone is an older and, therefore, better-studied inhaled steroid for use during pregnancy. 

Systemic glucocorticoids may increase the risk of preeclampsia and decreased birth weight but should be used if asthma exacerbation is severe, because untreated asthma bears its own risks on the pregnancy.

Potentially, beta-agonists may interfere with uterine contractility; therapy during labor should be restricted to patients in whom the benefits clearly outweigh risks.

Leukotriene pathway medications generally should not be used because of a lack of safety information; montelukast use in pregnant women is not associated with risk of major birth defects; leukotrienes should only be used during pregnancy if there are no other alternatives 

Immunotherapy should not be started nor dosage escalated during pregnancy, given the rare, but significant, risk of anaphylaxis. If already begun, immunotherapy may be maintained without further dose escalation.

Prognosis in Asthma

Signs that may indicate a poor prognosis in asthma (ie, risk factors for death) are as follows:

Females, ethnic minorities, people with a low annual family income (defined as less than $20,000/y in the United States), and persons with poor access to or education about health care have worse outcomes than do other individuals.

Many young children “outgrow” asthma, especially boys who have no personal or family history of atopy. However, clinical experience shows that many teenagers who become asthma-free may experience asthma again in their 20s and 30s. Perinatal exposure to allergens or passive smoke has been postulated to make outgrowing asthma less likely.

Patient Education

Patients should be informed that upper airway allergic symptoms can be an early warning system for allergic asthma.

Parents with a history of allergies should be advised that some evidence suggests that environmental control measures may potentially prevent sensitization in their children. Simple, but unproven, measures include removing bedroom carpet, avoiding passive smoke exposure, venting gas appliances, increasing fish and vegetable intake, and breastfeeding.

For patient education information, see eMedicineHealth's Asthma Center, as well as Asthma, Asthma FAQ, Occupational Asthma, and Asthma Medications.

Author

John J Oppenheimer, MD, Clinical Professor, Department of Medicine, Rutgers New Jersey Medical School; Director of Clinical Research, Pulmonary and Allergy Associates, PA

Disclosure: Received research grant from: quintiles, PRA, ICON, Novartis: Adjudication<br/>Received consulting fee from AZ for consulting; Received consulting fee from Glaxo, Myelin, Meda for consulting; Received grant/research funds from Glaxo for independent contractor; Received consulting fee from Merck for consulting; Received honoraria from Annals of Allergy Asthma Immunology for none; Partner received honoraria from ABAI for none. for: Atlantic Health System.

Coauthor(s)

Mauli Desai, MD, Associate Professor of Medicine, Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai

Disclosure: Nothing to disclose.

Specialty Editors

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Stephen C Dreskin, MD, PhD, Professor of Medicine, Departments of Internal Medicine, Director of Allergy, Asthma, and Immunology Practice, University of Colorado Health Sciences Center

Disclosure: Received consulting fee from Genentech for consulting; Received grant support from NIH for research; Received consulting fee from Clinical Immunization and Safety Assessment (CISA) Network (administered by Vanderbilt University) for consulting; Received consulting fee from o Member, Medical Expert Panel, Division of Vaccine Injury Compensation (DVIC), Department of Health and Human Services. for med legal reviews; Received consulting fee from o Member, Medical Expert Panel, Vaccine Review, Pfize.

Chief Editor

Michael A Kaliner, MD, Clinical Professor of Medicine, George Washington University School of Medicine; Medical Director, Institute for Asthma and Allergy

Disclosure: Nothing to disclose.

Additional Contributors

Brian M Cohee, MD, Fellow in Pulmonary and Critical Care Medicine, Walter Reed National Military Medical Center

Disclosure: Nothing to disclose.

Gregory J Argyros, Col, MD, Chief, Graduate Medical and Dental Education, J7/Joint Task Force, National Capital Region Medical; Professor of Medicine, Uniformed Services University of the Health Sciences

Disclosure: Nothing to disclose.

William F Kelly, III, MD, Associate Professor of Medicine, Uniformed Services University of the Health Sciences; Staff Physician, Division of Pulmonary/Critical Care Medicine, Department of Medicine, Walter Reed National Military Medical Center

Disclosure: Nothing to disclose.

References

  1. Expert panel-3. NHLBI NIH; AUG 2007. 440.
  2. Scirica CV, Celedón JC. Genetics of asthma: potential implications for reducing asthma disparities. Chest. 2007 Nov. 132(5 Suppl):770S-781S. [View Abstract]
  3. Nurmagambetov T, Kuwahara R, Garbe P. The Economic Burden of Asthma in the United States, 2008-2013. Ann Am Thorac Soc. 2018 Mar. 15 (3):348-356. [View Abstract]
  4. Yaghoubi M, Adibi A, Safari A, FitzGerald JM, Sadatsafavi M, Canadian Respiratory Research Network. The Projected Economic and Health Burden of Uncontrolled Asthma in the United States. Am J Respir Crit Care Med. 2019 Jun 5. [View Abstract]
  5. Marcus P. Incorporating anti-IgE (omalizumab) therapy into pulmonary medicine practice: practice management implications. Chest. 2006 Feb. 129(2):466-74. [View Abstract]
  6. Zhang Z, Lai HJ, Roberg KA, Gangnon RE, Evans MD, Anderson EL, et al. Early childhood weight status in relation to asthma development in high-risk children. J Allergy Clin Immunol. 2010 Dec. 126(6):1157-62. [View Abstract]
  7. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrländer C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011 Feb 24. 364(8):701-9. [View Abstract]
  8. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N Engl J Med. 2016 Aug 4. 375 (5):411-421. [View Abstract]
  9. Braman SS. The global burden of asthma. Chest. 2006 Jul. 130(1 Suppl):4S-12S. [View Abstract]
  10. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006 Nov 23. 355(21):2226-35. [View Abstract]
  11. American Lung Association Epidemiology and Statistics Unit Research and Health Education Division. Trends in Asthma Morbidity and Mortality. American Lung Association. Available at https://www.lung.org/assets/documents/research/asthma-trend-report.pdf. September 2012;
  12. Hofmaier S. Allergic airway diseases in childhood: an update. Pediatr Allergy Immunol. 2014 Dec 3. [View Abstract]
  13. Sasaki M, Yoshida K, Adachi Y, Furukawa M, Itazawa T, Odajima H, et al. Factors associated with asthma control in children: findings from a national web-based survey. Pediatr Allergy Immunol. 2014 Dec 2. [View Abstract]
  14. Tilles SA. Differential diagnosis of adult asthma. Med Clin North Am. 2006 Jan. 90(1):61-76. [View Abstract]
  15. Miller MR, Quanjer PH, Swanney MP, Ruppel G, Enright PL. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011 Jan. 139(1):52-9. [View Abstract]
  16. Hansen JE. Lower limit of normal is better than 70% or 80%. Chest. 2011 Jan. 139(1):6-8. [View Abstract]
  17. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005 Nov. 26(5):948-68. [View Abstract]
  18. Bernstein IL, Li JT, Bernstein DI, Hamilton R, Spector SL, Tan R, et al. Allergy diagnostic testing: an updated practice parameter. Ann Allergy Asthma Immunol. 2008 Mar. 100(3 Suppl 3):S1-148. [View Abstract]
  19. Kowalski ML, Cieslak M, Pérez-Novo CA, Makowska JS, Bachert C. Clinical and immunological determinants of severe/refractory asthma (SRA): association with Staphylococcal superantigen-specific IgE antibodies. Allergy. 2011 Jan. 66(1):32-8. [View Abstract]
  20. Imaoka H, Gauvreau GM, Watson RM, et al. Sputum inflammatory cells and allergen-induced airway responses in allergic asthmatic subjects. Allergy. 2011 Aug. 66(8):1075-80. [View Abstract]
  21. Szefler SJ, Mitchell H, Sorkness CA, Gergen PJ, O'Connor GT, Morgan WJ, et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. Lancet. 2008 Sep 20. 372(9643):1065-72. [View Abstract]
  22. Juniper EF, Kline PA, Vanzieleghem MA, Ramsdale EH, O'Byrne PM, Hargreave FE. Effect of long-term treatment with an inhaled corticosteroid (budesonide) on airway hyperresponsiveness and clinical asthma in nonsteroid-dependent asthmatics. Am Rev Respir Dis. 1990 Oct. 142(4):832-6. [View Abstract]
  23. Long-term effects of budesonide or nedocromil in children with asthma. The Childhood Asthma Management Program Research Group. N Engl J Med. 2000 Oct 12. 343(15):1054-63. [View Abstract]
  24. Pauwels RA, Löfdahl CG, Postma DS, Tattersfield AE, O'Byrne P, Barnes PJ, et al. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med. 1997 Nov 13. 337(20):1405-11. [View Abstract]
  25. Suissa S, Ernst P, Benayoun S, Baltzan M, Cai B. Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med. 2000 Aug 3. 343(5):332-6. [View Abstract]
  26. Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006 Jan. 129(1):15-26. [View Abstract]
  27. Rabe KF, Pizzichini E, Ställberg B, Romero S, Balanzat AM, Atienza T, et al. Budesonide/formoterol in a single inhaler for maintenance and relief in mild-to-moderate asthma: a randomized, double-blind trial. Chest. 2006 Feb. 129(2):246-56. [View Abstract]
  28. Pavord ID, Jeffery PK, Qiu Y, Zhu J, Parker D, Carlsheimer A, et al. Airway inflammation in patients with asthma with high-fixed or low-fixed plus as-needed budesonide/formoterol. J Allergy Clin Immunol. 2009 May. 123(5):1083-9, 1089.e1-7. [View Abstract]
  29. Hanania NA, Alpan O, Hamilos DL, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011 May 3. 154(9):573-82. [View Abstract]
  30. Levenson M. Long-acting beta-agonists and adverse asthma events meta-analysis. Statistical briefing package for Joint Meeting of the Pulmonary-Allergy Drugs Advisory Committee, Drug Safety and Risk Management Advisory Committee and Pediatric Advisory Committee. December 10-11, 2008. Available at http://www.fda.gov/ohrms/dockets/ac/08/briefing/2008-4398b1-01-FDA.pdf. Accessed: January 13, 2009.
  31. US Food and Drug Administration. FDA Announces New Safety Controls for Long-Acting Beta Agonists, Medications Used to Treat Asthma. FDA Web site. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm200931.htm. Accessed: March 11, 2010.
  32. Long-Acting Beta agonists (LABAs) and Inhaled Corticosteroids (ICS): Drug Safety Communication - Boxed Warning About Asthma-Related Death Removed. US Food and Drug Administration. Available at https://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm590001.htm. December 20, 2017; Accessed: December 22, 2017.
  33. Baur X, Sigsgaard T, Aasen TB, Burge PS, Heederik D, Henneberger P, et al. Guidelines for the management of work-related asthma. Eur Respir J. 2012 Mar. 39(3):529-545. [View Abstract]
  34. Sheikh A, Hurwitz B, Shehata Y. House dust mite avoidance measures for perennial allergic rhinitis. Cochrane Database Syst Rev. 2007 Jan 24. CD001563. [View Abstract]
  35. Vinhas R, Cortes L, Cardoso I, et al. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy. 2011 Aug. 66(8):1088-98. [View Abstract]
  36. Nelson HS. Allergen immunotherapy: where is it now?. J Allergy Clin Immunol. 2007 Apr. 119(4):769-79. [View Abstract]
  37. Abramson MJ, Puy RM, Weiner JM. Allergen immunotherapy for asthma. Cochrane Database Syst Rev. 2003. CD001186.
  38. Brüggenjürgen B, Reinhold T, Brehler R, Laake E, Wiese G, Machate U, et al. Cost-effectiveness of specific subcutaneous immunotherapy in patients with allergic rhinitis and allergic asthma. Ann Allergy Asthma Immunol. 2008 Sep. 101(3):316-24. [View Abstract]
  39. Wilson DR, Torres LI, Durham SR. Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev. 2003. CD002893. [View Abstract]
  40. Maloney J, Bernstein DI, Nelson H, Creticos P, Hébert J, Noonan M, et al. Efficacy and safety of grass sublingual immunotherapy tablet, MK-7243: a large randomized controlled trial. Ann Allergy Asthma Immunol. 2014 Feb. 112 (2):146-153.e2. [View Abstract]
  41. Creticos PS, Esch RE, Couroux P, Gentile D, D'Angelo P, Whitlow B, et al. Randomized, double-blind, placebo-controlled trial of standardized ragweed sublingual-liquid immunotherapy for allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2014 Mar. 133 (3):751-8. [View Abstract]
  42. Creticos PS, Maloney J, Bernstein DI, Casale T, Kaur A, Fisher R, et al. Randomized controlled trial of a ragweed allergy immunotherapy tablet in North American and European adults. J Allergy Clin Immunol. 2013 May. 131 (5):1342-9.e6. [View Abstract]
  43. Nolte H, Bernstein DI, Nelson HS, Kleine-Tebbe J, Sussman GL, Seitzberg D, et al. Efficacy of house dust mite sublingual immunotherapy tablet in North American adolescents and adults in a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2016 Dec. 138 (6):1631-1638. [View Abstract]
  44. Karpel J, Massanari M, Geba GP, Kianifard F, Inhaber N, Zeldin RK. Effectiveness of omalizumab in reducing corticosteroid burden in patients with moderate to severe persistent allergic asthma. Ann Allergy Asthma Immunol. 2010 Dec. 105(6):465-70. [View Abstract]
  45. Rodrigo GJ, Neffen H, Castro-Rodriguez JA. Efficacy and safety of subcutaneous omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest. 2011 Jan. 139(1):28-35. [View Abstract]
  46. ClinicalTrials.gov. A Study of Xolair to Evaluate Effectiveness and Long-Term Safety in Patients With Moderate to Severe Asthma. ClinicalTrials.gov. Available at http://clinicaltrials.gov/ct2/show/NCT00252135. Accessed: February 26, 2010.
  47. Mastronarde JG, Anthonisen NR, Castro M, Holbrook JT, Leone FT, Teague WG, et al. Efficacy of esomeprazole for treatment of poorly controlled asthma. N Engl J Med. 2009 Apr 9. 360(15):1487-99. [View Abstract]
  48. Sander N, Fusco-Walkert SJ, Harder JM, Chipps BE. Dose counting and the use of pressurized metered-dose inhalers: running on empty. Ann Allergy Asthma Immunol. 2006 Jul. 97(1):34-8. [View Abstract]
  49. Aaron SD, Fergusson D, Dent R, Chen Y, Vandemheen KL, Dales RE. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004 Jun. 125(6):2046-52. [View Abstract]
  50. Hallstrand TS, Bates PW, Schoene RB. Aerobic conditioning in mild asthma decreases the hyperpnea of exercise and improves exercise and ventilatory capacity. Chest. 2000 Nov. 118(5):1460-9. [View Abstract]
  51. Fisher EB, Strunk RC, Highstein GR, Kelley-Sykes R, Tarr KL, Trinkaus K, et al. A randomized controlled evaluation of the effect of community health workers on hospitalization for asthma: the asthma coach. Arch Pediatr Adolesc Med. 2009 Mar. 163(3):225-32. [View Abstract]
  52. Woessner KM, Simon RA, Stevenson DD. Monosodium glutamate sensitivity in asthma. J Allergy Clin Immunol. 1999 Aug. 104(2 Pt 1):305-10. [View Abstract]
  53. Bunyavanich S, Schadt EE. Systems biology of asthma and allergic diseases: A multiscale approach. J Allergy Clin Immunol. 2014 Nov 21. [View Abstract]
  54. Calderón MA, Linneberg A, Kleine-Tebbe J, De Blay F, Hernandez Fernandez de Rojas D, Virchow JC, et al. Respiratory allergy caused by house dust mites: What do we really know?. J Allergy Clin Immunol. 2014 Nov 22. [View Abstract]
  55. Buist AS, Vollmer WM, Wilson SR, Frazier EA, Hayward AD. A randomized clinical trial of peak flow versus symptom monitoring in older adults with asthma. Am J Respir Crit Care Med. 2006 Nov 15. 174(10):1077-87. [View Abstract]
  56. Woolcock A, Lundback B, Ringdal N, Jacques LA. Comparison of addition of salmeterol to inhaled steroids with doubling of the dose of inhaled steroids. Am J Respir Crit Care Med. 1996 May. 153(5):1481-8. [View Abstract]
  57. Currie GP, Lee DK, Srivastava P. Long-acting bronchodilator or leukotriene modifier as add-on therapy to inhaled corticosteroids in persistent asthma?. Chest. 2005 Oct. 128(4):2954-62. [View Abstract]