Antithrombin Deficiency

Back

Practice Essentials

Antithrombin III (henceforth referred to as antithrombin or AT) is a 58-kDa molecule belonging to the serine protease inhibitor (serpin) superfamily that plays a central role in anticoagulation and in regulating appropriate wound healing in mammalian circulation systems. Antithrombin inhibits several enzymes of the coagulation system, including factor IIa, IXa, Xa, and XIIa. 

Quantitative antithrombin deficiency Type I results from heterozygous point mutations or major gene deletions leading to low antithrombin antigen and activity levels. The more common qualitative Type II is characterized by normal antithrombin levels and reduced function and is further categorised into IIa, b, or c, depending on which part of the antithrombin molecule is affected by the mutation.[1, 2]  Antithrombin deficiency may also be acquired. All forms of AT deficiency increase the risk for venous thrombosis and, far less commonly, arterial thrombosis. 

Antithrombin functional assay is the preferred initial diagnostic study, in order not to miss Type II deficiency. If abnormal, antithrombin antigen levels will distinguish between the two types. Functional assays assessing inhibitory activity on Xa have a higher sensitivity than those assessing thrombin and some patients with Type II antithrombin deficiency have only slightly reduced or even normal function, thus increasing the complexity of its diagnosis.[2]

When patients with a known inherited AT deficiency who are experiencing an acute thrombotic event fail to respond to intravenous heparin, treatment with a direct thrombin inhibitor (eg, argatroban, dabigatran) is recommended. For a planned major operation, correction of antithrombin levels using antithrombin concentrate products is recommended. In acute severe trauma, some studies also suggest a beneficial effect with antithrombin replacement. 

For patient education information, see the Deep Vein Thrombosis Health Center.

Background

Paul Morawitz at the University of Tubingen first coined the term antithrombin in 1905 to describe plasma’s ability to neutralize thrombin activity. In 1965, Olav Egeberg described the first family with thrombotic disease due to inherited antithrombin deficiency, providing convincing evidence of the clinical importance of antithrombin.[3] For a historical overview of antithrombin research, see the excellent review by Ulrich Abildgaard.[4]  

 

Pathophysiology

As its name implies, antithrombin was first characterized as an inhibitor of thrombin. Antithrombin also affects other serine proteases of the coagulation cascade.[5, 6, 7, 8]  A diagrammatic representation of the serine proteases with which antithrombin interacts is shown in the image below. Studies have shown that antithrombin also has anti-inflammatory actions that are independent of its effect on regulating coagulation.[9, 10, 11, 12]

 



View Image

Antithrombin sites of action.

Antithrombin Function in Anticoagulation and Inflammation

Antithrombin belongs to the serpin family of inhibitors, which include heparin cofactor II (HCII), alpha2-antiplasmin, plasminogen activator inhibitor-1 (PAI-1), C1-inhibitor, and alpha1-antitrypsin.[13] Antithrombin forms a 1:1 irreversible complex with its target active enzyme, and the complex is cleared by the liver with loss of target enzyme activity.

The serpin family of proteins have a highly conserved molecular structure, with 3 beta-sheets and 9 alpha-helices.[14] A region known as the reactive center loop (RCL) protrudes above the core of the serpin molecule and has a sequence of amino acids that is complementary to binding sites in the active sites of the target proteases. Cleavage at the reactive center by target proteases results in the activation of a unique mechanism of inhibition.[15] Antithrombin exists in 2 forms: 90% as the alpha form that is glycosylated at 4 sites (Asn-96, Asn-135, Asn-155 and Asn-192) and 10% as the beta form that is not glycosylated at position Asn-135.[16]

Antithrombin is synthesized primarily in the liver. It is secreted into the plasma in the form of a molecule with a molecular weight of 58,200 kDa. The normal plasma level is 150 mcg/mL and the plasma half-life is approximately 3 days. Thus, even short periods of abnormal liver function may reduce antithrombin production, leading to potential thrombosis.

Plasma antithrombin is comprised of 432 amino acids, 6 of which are cysteine residues that form 3 intramolecular disulfide bonds. The major physiologic role of the molecule, as the name implies, is the inhibition of thrombin (factor IIa). Additional target proteases include activated factors X, IX, XI, and XII.[17] Antithrombin also serves to reduce factor VII activity by accelerating the dissociation of the factor VIIa-tissue factor complex and preventing its reassociation.[8]

The mechanism of inactivation of serine proteinases occurs in two steps, with an initial weak interaction followed by a conformational change that ‘traps’ the protease. This mechanism is depicted in the image below.



View Image

Antithrombin (AT) neutralizes the enzyme (IIa) by forming a 1:1 stoichiometric complex (AT:IIa) between the arginine-serine sites of the 2 proteins. B....

Antithrombin (AT) neutralizes the enzyme (IIa) by forming a 1:1 stoichiometric complex (AT:IIa) between the arginine-serine sites of the 2 proteins. Binding of heparin to lysyl residues on AT results in a conformational change in AT, which makes it more available to bind thrombin (IIa), IXa, and Xa, thus markedly accelerating the rate of enzyme-inhibitor complex formation. AT also neutralizes XIa and XIIa. Transformation to the final complex involves formation of a highly stable bond between the Arg393 residue on antithrombin and the catalytic Ser residue(s) on thrombin. The formation of the antithrombin-proteinase complex is accelerated by heparin and related glycosaminoglycans, reviewed elsewhere.

In vitro studies have established the relative rates of thrombin generation and neutralization, but a study by Undas et al quantified the changes in the rate of activation and inactivation of several hemostatic factors in blood serially sampled from a bleeding time cut.[18] In this in vivo test system with an active, ongoing interaction between blood components and the injured vessel wall in flowing blood, it was noted that thrombin-antithrombin (TAT) complexes started increasing within 30 seconds of the bleeding time cut and reached a maximum by 180 seconds.

The pattern of increase was typical of the two phases of activation, which have been described in other models of thrombosis, with an initial 60- to 90-second initiation phase followed by a subsequent propagation phase, during which activation reaches its maximum level.[18] In the healthy volunteers, under basal conditions, the amount of thrombin formed exceeded TAT formation at all time points tested until bleeding stopped.

TAT complexes formed following the neutralization of thrombin by antithrombin have been used as a surrogate marker for thrombin generation; serial changes in TAT levels have been used to determine alterations of the extent of hemostatic activation in the course of a disease or to assess the impact of specific therapy (eg, the effect of heparin in potentially treating d isseminated intravascular coagulation).

Heparin cofactor II (HCII) is another physiologic protein inhibitor of hemostasis that appears to contribute about 20-30% of plasma heparin-cofactor activity in the presence of large amounts of heparin; HCII does not, however, contribute to anti–factor Xa activity. Therefore, it has been suggested that, in the assessment of the true heparin cofactor activity of antithrombin, the anti–factor Xa activity of antithrombin be measured within 30 seconds of incubation with factor Xa in the presence of small amounts of heparin in order to exclude the contribution of HCII to this assay.

The use of low doses of heparin in the test system and the use of factor Xa rather than thrombin allows for an accurate assessment of antithrombin's heparin cofactor activity with avoidance of the contribution of HCII to this assessment. Thrombomodulin, an endothelial cell receptor for thrombin, also binds antithrombin and accelerates its anticoagulant effect. In a purified system, tissue factor pathway inhibitor (TFPI) also appeared to potentiate the ability of antithrombin to neutralize activated coagulation factors.

Independent of its anticoagulant properties, antithrombin also exerts anti-inflammatory and anti-proliferative effects. A number of studies have documented the ability of antithrombin to inhibit leukocyte rolling and adhesion, which is thought to be at least partly due to the release of prostacyclins from endothelial cells.[19]

Oelschlager et al have shown that antithrombin produces a dose-dependent reduction in both lipopolysaccharide and tumor necrosis factor (TNF)–alpha activation of nuclear factor kB (NF-kB) in cultured monocytes and endothelial cells.[20] As a result, the synthesis of proinflammatory mediators such as interleukin (IL)-6, IL-8, and TNF is decreased, leading to an anti-inflammatory effect.

A number of studies have also shown that cleaved antithrombin has potent antiangiogenic and antitumor properties. Larsson and colleagues have shown that fibroblast growth factor (FGF)-induced angiogenesis in the chick embryo and angiogenesis in mouse fibrosarcoma tumors is inhibited by treatment with latent antithrombin.[21] There is literature to suggest that latent antithrombin may also induce apoptosis of endothelial cells by disrupting cell-matrix interactions.

Antithrombin Gene Structure

The gene for antithrombin, SERPINC1, is located on chromosome 1 band q23.1-23.9, has 7 exons and 6 introns, and is 13.5 kilobases (kb). The promoter region does not have a TATA or CAAT box. A control element at the 5' flanking region is thought to be critical for efficient synthesis of antithrombin, with homology to an enhancer of murine and human genes. The mRNA is 1567 nucleotides long and has an approximately 175 base pair (bp) 3' untranslated region. Two modes of splicing of the primary transcript are feasible at 2 sites in the first intron; the result is either a full native antithrombin molecule or a truncated product with a portion left within the cell.

Patients with AT deficiency, either inherited or acquired, are predisposed to serious venous and arterial thrombotic disease due to prolonged circulation and activity of activated coagulation factors. This increases the risk of thrombus formation at sites that fulfill Virchow's postulates (stasis, alteration of coagulability of the blood, and vessel wall damage). Even a 50% reduction in the level of antithrombin activity is sufficient to ‘tilt’ the coagulation system in favor of thrombosis.

The most common thrombotic manifestations in patients with antithrombin deficiency (AT deficiency) include lower extremity deep venous thrombosis, with recurrent VTE being common.[22] Other sites of thrombosis include the inferior vena cava, hepatic and portal veins, and renal, axillary, brachial, mesenteric, pelvic, cerebral, and retinal veins. Arterial thrombosis is far less common.

Despite their increased incidence of thrombosis, individuals with antithrombin deficiency have a normal life expectancy. The European Prospective Cohort on Thrombophilia (EPCOT) study recently looked at mortality in groups of various thrombophilia patients, including antithrombin deficiency, compared with a control group from March 1994 to December 2006.[23] Overall, they found no increased risk of death in individuals with thrombophilia. During the study period, 6.6% of patients with antithrombin deficiency died, compared with 5.1% of control patients. Additionally, they found the hazard ratio to be 1.65 with a confidence interval 0.91 to 2.93.

Inherited Antithrombin Deficiency

Inherited antithrombin deficiency (AT deficiency) can be broadly classified into two types.

Type I antithrombin deficiencies are heterozygous mutations that lead to a complete loss of the mutant antithrombin protein, resulting in immunologic and functional levels that are 50% or less than normal. The genetic basis of type I mutations includes major gene deletions or point mutations, with point mutations being more common. The mutations appear to cause a quantitative reduction in antithrombin synthesis by various processes, including premature termination of translation, aberrant RNA processing, and production of unstable antithrombin molecules that have shortened plasma half lives.[16]

One report described 22 novel mutations in the antithrombin gene, of which 9 missense mutations resulted in type I deficiency and led to low antithrombin activity and antigen levels. Clinically these mutations were all associated with venous thrombosis occurring before the age of 32 years.[24] Homozygous type I antithrombin deficiency (AT deficiency) is almost always fatal in utero.[17]

Type II antithrombin deficiencies are typically the result of single amino acid changes that result in functional deficits in a molecule that is otherwise normally synthesized and secreted into the plasma. The variant antithrombin molecules may have abnormalities at the reactive site (Type IIa) or the heparin binding site (Type IIb). Most cases of type II antithrombin deficiency are also heterozygous, although rare cases of homozygous type II deficiency have been described.[17]

A third category of type II (Type IIC) antithrombin deficiency also exists, in which multiple or "pleiotropic" abnormalities affect the reactive site, the heparin binding site, or the plasma concentration. Type II heparin binding site variants are not associated with a high risk of thrombosis unless the affected individual is a homozygote.[16]

A number of mutations in AT have been molecularly characterized. For example, the heterozygous form of a commonly inherited variant of antithrombin affecting the heparin-binding site (HBS) is not a risk factor for thrombosis. However, several cases of patients with homozygous mutations in the Heparin Binding Site (HBS) region of the antithrombin gene have been published, and homozygosity is associated with earlier presentation of thrombotic disease.[25] Two of these cases were shown to be associated with arterial thrombotic disease.

On the other hand, the replacement of the normal threonine-85 (Thr-85) by a nonpolar methionine (known as Antithrombin-Wibble) results in a mild adult-onset thrombotic disease, whereas replacement of the same Thr-85 by a polar lysine (known as Antithrombin-Wobble) results in early onset of thrombosis in childhood. Interestingly, fevers can trigger conformational stress on the Antithrombin-Wobble protein and favor thrombosis.

Finally, a homozygous type of antithrombin deficiency (antithrombin III Kumamoto) has been reported to be present in a family with consanguinity. It was shown to be associated with arterial thrombotic disease. The patient developed cerebral arterial thrombosis at age 17 years and subsequently developed venous thrombosis.

A current listing of mutations affecting the antithrombin gene is available at the Antithrombin Mutation Database.[26] A review of published mutations indicates that they are distributed throughout the molecule, with reactive center defects having the biggest impact on the potential for thrombosis, and heparin-binding defects carrying the least thrombotic risk.

Although it is well-recognized that inherited antithrombin deficiency (AT deficiency) confers a higher risk of coagulopathy than inherited deficiencies of protein C deficiency or p rotein S deficiency there is unpredictable variability in the incidence and severity of thrombotic manifestations in patients with inherited antithrombin deficiency. A population-based case control study found a 5-fold increased risk of thrombosis when antithrombin deficiency was associated with another genetic defect that predisposes to thrombosis.[27, 28] This risk increased to 20-fold when antithrombin deficiency was coupled with another acquired risk factor for thrombosis.[27] Co-inherited disorders include Activated Protein C Resistance (Factor V Leiden), protein C or S deficiency, thrombomodulin gene mutations, methylene tetrahydrofolate reductase (MTHFR) deficiency, and high lipoprotein (a) levels.

In families with inherited antithrombin deficiency, thrombotic complications often begin in the second decade of life. Approximately 40% of these events seem to be spontaneous in nature, with no clear provoking event such as major trauma, surgery or prolonged immobility. In the remaining 60%, additional precipitating factors, such as oral contraceptive use, pregnancy, labor and delivery, surgery, or trauma, may precipitate the thrombotic event.[29]

Acquired causes of antithrombin deficiency

Neonates

For healthy full-term neonates, serum AT levels are typically >50% lower than adult reference values. Newborns do not have the thrombotic tendency noted in adults with similarly reduced values because of simultaneous reductions in their procoagulant levels and perhaps due to a protective role of alpha2-macroglobulin as a thrombin inhibitor in the neonate and in childhood. Premature infants have even lower serum levels.[30]

AT levels in the newborn rise to approximately 60% of that of adult levels 1 month after birth and reach normal value at approximately 3 months.[30] Genetic mutations can influence this level, but the superimposition of serious illnesses, can further reduce antithrombin due to increased consumption or decreased production.

Acute respiratory distress syndrome is a known cause of antithrombin deficiency and itself is a major cause of both morbidity and mortality in the newborn. Extracorporeal membrane oxygenation used in the treatment of respiratory failure can be associated with reduced antithrombin levels and increased thrombotic events. Other causes of acquired reductions of antithrombin in neonates include sepsis, asphyxia, liver disease, other causes of DIC, and maternal preeclampsia or eclampsia.[31, 32]

Pregnancy

There is little strong clinical evidence that reduction of antithrombin occurs during normal pregnancy; one Scandinavian study reported that antithrombin levels were lower during the third trimester of pregnancy and in the postpartum period, but there has been no report specifically linking thrombosis to an acquired deficiency in AT.[33] Pregnancy-induced antithrombin deficiency, however, is more likely to be seen in twin and triplet pregnancies.[34]

Diseases associated with pregnancy, such as hypertension of pregnancy, eclampsia, liver dysfunction characterized by elevations in liver enzymes, and DIC, also reduce antithrombin levels. In these conditions, low-grade activation of coagulation with consumption of antithrombin is evident before gross deterioration of coagulation parameters occurs.[31, 35]

Pregnancy-induced AT deficiency has been shown to increase the risk of liver dysfunction independent of thrombocytopenia.[36]

Liver disease

Synthesis of antithrombin and other physiologically important inhibitors of hemostasis, synthesis of procoagulants, and clearance of activated coagulation factors are all regulated by the liver. Thus, the liver plays a central role in hemostasis.

The severity of liver disease correlates with reductions in antithrombin antigen levels. These reductions are not only due to impaired synthesis, but also to an element of increased consumption, particularly when additional risk factors, such as sepsis, surgery, and hypotension, are present in patients with chronic liver disease.

Patients with acute, massive hepatocellular injury and elevations of liver enzyme levels can often have a significantly larger component of a consumptive process than patients with slowly progressive end-stage liver disease. Because of the decreased synthesis of inhibitors as well as the decreased ability to clear activated coagulation factors, patients undergoing orthotopic liver transplantation predictably develop DIC with reduction inantithrombin levels.

Kidney disease

Importantly, patients with nephrotic syndrome lose antithrombin in the urine, resulting in reduced plasma levels, and they are at higher risk for thrombotic events. Conversely, patients with inherited antithrombin deficiency may develop renal failure due to renal vein thrombosis or due to glomerular deposition of fibrinogen. The degree of compromise in renal function may be such that these patients need renal replacement therapy. Furthermore, as renal dysfunction progresses, these patients lose increasing amounts antithrombin in the urine and, thus, become even more prone to develop thrombotic episodes.[37, 38]

Bone marrow transplantation

Veno-occlusive hepatic disease is seen in patients who undergo bone marrow transplantation, particularly in unrelated-donor transplantations, and it is associated with the development of microthrombi in the terminal hepatic venules. This results in rapid, marked deterioration of liver function, causing a coagulopathy characterized by the reduction in the level of antithrombin and, consequently, significant morbidity and mortality.

Sepsis

Interest in the role of antithrombin deficiency in the setting of sepsis and the critically ill patient has been growing. There appears to be a correlation between the severity of illness and the degree of antithrombin reduction.[17] However, to what extent the depletion of antithrombin affects the clinical condition of such patients, or whether a reduction in the levels of antithrombin is merely a marker of inflammation and illness, remains to be determined.

Mesters et al in 1996 demonstrated a correlation between marked reduction in serum antithrombin levels and poor outcomes in septic patients.[39] A number of studies thereafter suggested the use of antithrombin supplementation in patients with severe sepsis and septic shock.[40]

However, the KyberSept trial, which was published in 2001 and was the largest randomized controlled trial of severely septic patients treated with antithrombin supplementation, failed to demonstrate any significant beneficial effects on mortality at 28 days.[41] Of note, a subgroup of patients with severe sepsis and high risk of death with concurrent diagnosis of DIC were found to have a significant reduction in mortality when given antithrombin.[42]

In general, a number of studies regarding the use of antithrombin as a treatment in the intensive care setting have overall concluded that, although there may be some benefit to such therapy, highly supraphysiologic doses of antithrombin are necessary, and the concurrent use of any form of heparin negates the benefit that may be derived from antithrombin treatment in this setting.[17]

More recently, Tagami et al in a large, retrospective database analysis demonstrated decreased 28-day mortality in patients with severe pneumonia and sepsis-related DIC who were given therapeutic antithrombin.[43] Additionally, a small randomized controlled trial studying the use of antithrombin to treat DIC in patients with sepsis demonstrated increased recovery rates from DIC, but lacked adequate power to detect a reduction in 28-day mortality.[44]

Nonetheless, the use of supplemental antithrombin in septic patients remains controversial. Further analysis with large, randomized control studies will be required before definitive recommendations can be made.

Drug-induced reduction in antithrombin levels

Heparin, given by intravenous or subcutaneous routes, causes an approximately 30% reduction in antithrombin levels, presumably due to rapid clearance in vivo of heparin-antithrombin complexes. Plasma samples to determine baseline antithrombin levels must therefore not be drawn after exposure to heparin.

A large body of literature shows that estrogens/oral contraceptives can also reduce antithrombin levels, potentially resulting in hypercoagulability (See Hypercoagulability - Hereditary Thrombophilia and Lupus Anticoagulants Associated With Venous Thrombosis and Emboli).

Finally, AT deficiency has also been described with asparaginase therapy; this occurs by suppression of production of AT in the liver as part of the mechanism of action of this chemotherapeutic agent.[45, 46]

Epidemiology

Antithrombin deficiency can be acquired and inherited; the inherited condition has a prevalence of 1 in 500–5000.[47]  In patients who develop venous thrombosis, the prevalence of hereditary antithrombin deficiency is between 1:20 and 1:200.[17]  Among the subtypes of antithrombin deficiency, type II antithrombin deficiency is at least twice as common as type I antithrombin deficiency in the general population.[48]  However, in symptomatic patients, type I antithrombin deficiency represents about 80% of the total cases, indicating that these individuals are more predisposed to VTE events than individuals with type II deficiencies.[49]

Antithrombin deficiency is not restricted to any particular ethnic group and has been found in many countries. In a study of 4000 Scottish blood donors, the prevalence of type I antithrombin deficiency was found to be 0.2/1000 and that of type II heparin binding site antithrombin deficiency was found to be 2-3/1000.[50]

Although no overt racial predilection for antithrombin deficiency is known, the literature, especially from the Far East, has described the presence of novel mutations in the antithrombin gene that have observed in thrombophilic patients in specific population groups.[51, 52]

Both men and women can present with the inherited disorder and clinical manifestations of antithrombin deficiency (AT deficiency) are evident at an early or later age, depending on the severity of the inherited genetic defect and also on the co-inheritance or presence of other thrombophilic mutations, drugs, or diseases.

The severely affected homozygous form of antithrombin deficiency may lead to spontaneous fetal loss, babies born small for their gestational age due to a small placenta secondary to thrombosed placental vessels, or severe thrombotic problems at birth. In other instances, thrombotic manifestations may start in the teenage years. 

Acquired antithrombin reductions are usually secondary to other illnesses or drugs.

Prognosis

Patients who are heterozygous for type I or II antithrombin (AT) deficiency develop significant thromboembolic complications, generally involving the deep veins. The lifetime risk of developing venous thromboembolism (VTE) depends on the subtype of antithrombin deficiency. In patients with type I inherited AT deficiency, the risk of thrombosis is estimated to be 1% per year, starting at age 15 years. The overall lifetime risk of developing a thrombotic event in patients with type I inherited AT deficiency is estimated to range from 50% to 85%.

In patients with type II antithrombin deficiency, the risk of developing VTE is higher in those patients who have reactive site defects as compared to heparin-binding site defects. Estimated lifetime risk of thrombosis in type II mutations has been reported to range from 6 to 20%, depending on the mutation site.[47, 16]

Patients may develop recurrent VTE at an early age and, if the condition is unrecognized or inadequately treated, they may die from such events. Long-term consequences, such as chronic leg ulcerations, severe venous varicosities, and postphlebitic syndrome, are common from repeated episodes of VTE, which cause significant morbidity. The prognosis of patients with reductions in antithrombin as part of other systemic disorders depends on the underlying disorder.

The frequency of arterial thrombotic complications is low in patients with antithrombin deficiency. However, mutations leading to arterial thromboses have been described.

The incidence of pregnancy-related VTE in women with antithrombin deficiency in early reports may have overestimated due to methodologic limitations such as selection bias in family studies. Subsequent studies have suggested a much lower level with ranges between 0.08-15.8% for risk  of initial VTE during.[53]  However, a family history of VTE significantly increases risk during pregnancy. VTE is the leading cause of direct maternal death and thrombotic complications during embryogenesis can lead to a variety of developmental abnormalities.[2]

The risk for VTE is also increased in women taking oral contraceptives (1.2-4.4%) or hormone replacement therapy (2.5-5.1%).[53]

Nephrotic syndrome has been associated with reductions in antithrombin and an increased incidence of venous thrombosis (renal vein, 60%; VTE, 40%) with only a 3% incidence of arterial thrombosis.

Complications

Serious long-term morbidity can result from the following issues:

History

The clinical presentation of antithrombin deficiency (AT deficiency) depends on whether patients develop venous or arterial thrombosis and on the extent of damage to the particular organ. Patients with lower extremity deep venous thrombosis (DVT) present in the usual manner, with unilateral leg edema; pain in the calf, thigh, or groin; and limitation of movement due to the presence of pain.

Pulmonary embolism (PE) may manifest as dyspnea, onset of pleuritic chest pain, and, rarely, hemoptysis. PE is underdiagnosed in many patients with DVT, because DVT, PE, or both may be not be clinically apparent.

The most common thrombotic manifestations include lower extremity venous thromboembolism (VTE), with recurrent VTE being common. Thrombosis involving the abdominal veins and/or other organs results in different manifestations and includes the onset of vague abdominal pain; postprandial exacerbation of abdominal pain, bloating, diarrhea, and/or hematochezia when mesenteric veins are involved[54] ; and, sometimes, ascites with right upper abdominal pain if portal or hepatic vein thrombosis is present.

Thrombosis of the retinal vessels causes visual defects, whereas cerebral venous sinus or arterial thrombosis results in central nervous system (CNS) manifestations that are related to the location of the thrombus. Other sites of thrombosis include the inferior vena cava and renal, axillary, brachial, or pelvic veins. Arterial thrombosis as the first manifestation of antithrombin deficiency (AT deficiency) is less common.

In patients with thrombosis, it is important to look for other precipitating factors, such as the use of oral contraceptives or hormone replacement therapy (HRT), trauma,[55] surgical procedures, pregnancy, and the postpartum state. Obtain a detailed family history, because an autosomal dominant pattern of inheritance may be evident. However, lack of a positive family history does not exclude the presence of a thrombophilic mutation when a person is being evaluated for idiopathic or secondary thromboembolic disease.

Heparin causes an acquired reduction in antithrombin level. Several systemic diseases are also associated with reductions in antithrombin.

Physical Examination

Physical findings depend upon the site of thrombosis. As indicated previously, VTE is much more common than arterial thrombotic disease.

Laboratory Studies

Important considerations during the laboratory workup of antithrombin deficiency (AT deficiency) include the following:

The initial workup should include the following routine coagulation studies:

Special laboratory tests

Two types of biologic assays measure antithrombin activity. The first is the heparin cofactor assay of antithrombin activity, which measures the ability of antithrombin to bind heparin and neutralize thrombin or factor Xa.

The second test measures the ability of antithrombin to progressively neutralize thrombin in the absence of heparin. HCII also has heparin cofactor activity, but it is able to neutralize thrombin only in the presence of a large amount of heparin. Thus, the use of low concentrations of heparin and of factor Xa (rather than thrombin) in the assay system excludes the contribution of heparin cofactor II (HCII) in the heparin cofactor assay of antithrombin activity.

The antigen assay and presence of abnormal molecules by electrophoretic mobility require further immunologic assessment or DNA sequencing to characterize the specific defect present. Assessment of the specific genetic defect allows for early and easy identification of carriers and of risk assessment, as well as provision of genetic counseling and anticipatory guidance.

While the optimal, cost-effective workup for an inherited coagulopathy varies from center to center, currently available tests include the following:

Imaging Studies

Objective documentation of all thromboembolic disease is essential. The various imaging techniques available include compression and color ultrasonography, venography, angiography, computed tomography (CT) scanning, and magnetic resonance imaging (MRI). The specific imaging modality depends on the location of the suspected thrombus.

Other Tests

Decisions about proceeding with additional tests, including genetic tests, are based on the patient's history and their current medications.

Gene-based tests require that the potential implications, such as the inherited nature of the defect and insurance issues, be discussed with the patient before blood is drawn. The need for genetic counseling should be discussed after test results become available.

Approach Considerations

In patients with a known inherited antithrombin (AT) deficiency, management of an acute thrombotic event becomes challenging, as these patients may exhibit a variable response to even large doses of heparin. When a therapeutic response to intravenous heparin is not achievable, additional support with an antithrombin concentrate may be necessary.[56]  Currently, however, direct thrombin inhibitors (eg, argatroban, dabigatran) are recommended. These agents do not require antithrombin for their action. Anticoagulation can be achieved more easily and without the use of exogenous blood products.

For a planned major operation, correction of antithrombin levels using antithrombin concentrate products is recommended in patients with known antithrombin (AT) deficiency. In acute severe trauma, some studies also suggest a beneficial effect with antithrombin replacement.

In contrast to antithrombin concentrates, fresh frozen plasma (FFP) does not have a sufficient concentration of antithrombin to provide adequate replacement in patients who are significantly deficient, so FFP should not be used if alternatives are available. The goal of correction should be to antithrombin activity of 80% or greater, to achieve physiologic function.

Close consultation with a hematologist is necessary; obtain consultation with a geneticist as needed. The support of a laboratory equipped to assay antithrombin activity is necessary in patients receiving antithrombin replacement therapy.

Prevention

Individuals with antithrombin deficiency who experience an unprovoked acute thromboembolic event are candidates for lifelong administration of an oral anticoagulant (vitamin K antagonists). Discontinuation of oral anticoagulants should be undertaken with great caution and only for essential procedures because of the risk of recurrent thromboembolic events. Replacement with antithrombin concentrate may be needed during such times.

Patients with known antithrombin deficiency may be considered candidates for antithrombotic prophylaxis during high-risk situations such as surgery and pregnancy.

Nishimura and Takagi reported five patients with ATIII deficiency who underwent cardiovascular surgery and were administered ATIII concentratenwithout postoperative complications such as hemorrhage or thrombosis. The authors concluded that in patients with ATIII deficiency undergoing cardiac surgery, it is important to perform ATIII replacement to achieve preoperative ATIII activity ≥120% and postoperative ATIII activity ≥80%, while the activated clotting time (ACT) is maintained at >400 seconds during cardiopulmonary bypass.[57]

In a study of  21 women with inherited AT deficiency who received recombinant human antithrombin (rhAT) therapy up to 24 hours before scheduled induction or cesarean delivery, or at the onset of labor, there were no reported cases of venous thromboembolism (VTE) within 7 days of dosing. However, two VTE events (one deep vein thrombosis and one pulmonary embolism) occurred 11 and 14 days after discontinuation of rhAT, in patients managed with prophylactic doses of heparin or low-molecular-weight heparin following delivery.[58]  

Rivaroxaban, a direct oral factor Xa inhibitor, has been shown to be non-inferior to existing treatments (such as warfarin or low-molecular-weight heparin) for preventing the recurrence of symptomatic DVT and PE. Successful perioperative use of rivaroxaban for prevention of thromboembolism in a patient with AT deficiency has been reported.[59, 60]

Guidelines Summary

Guidelines for the prevention of VTE during pregnancy and postpartum have been issued by the following organizations:

 ACOG recommends testing for inherited thrombophilia in all pregnant women with a history of thrombosis.[61]  The lack of a strong and consistent evidence base has lead to differing recommendations for women with AT diviciency. For prevention of first VTE, the recommendations are as follows:

Recommendations for prevention of recurrent VTE are as follows:

Medication Summary

Plasma-derived antithrombin is approved by the US Food and Drug Administration (FDA) for use in patients with antithrombin (AT) deficiency. In patients with congenital deficiency of antithrombin III, replacement/prophylaxis is recommended (1) before or following major surgery, (2) during bed rest for longer than 24 hours (because of the increased risk of thrombosis), (3) for thrombosis during pregnancy, to allow heparin to be effective, and (4) for acute deep venous thrombosis or pulmonary embolism.

Recombinant human antithrombin (Atryn) was approved by the FDA in early 2009 for the prevention of perioperative and peripartum thromboembolism in patients with congenital antithrombin deficiency. It is not approved for treatment of thromboembolic events. Recombinant human antithrombin is also approved for use in Europe for the perioperative prophylaxis of venous thromboembolism in patients with congenital AT deficiency.

Review the FDA package insert with each product that is used for therapy.

Antithrombin III, human (ATnativ, Thrombate III)

Clinical Context:  A serine protease inhibitor (an alpha2-globulin) that inactivates thrombin, plasmin, and other serine proteases of coagulation, including factors IXa, Xa, XIa, XIIa, and VIIa. Made from pooled human plasma and is heat treated. Do not refrigerate after reconstitution, and administer within 3 h of reconstitution. Although there is a theoretical risk of infectious disease transmission because this product is derived from human plasma, there have been no reported cases to date.

Antithrombin, recombinant (Atryn)

Clinical Context:  Antithrombin (AT) regulates hemostasis by inhibiting thrombin and factor Xa, key proteases for blood coagulation. Indicated for prevention of perioperative and peripartum thromboembolic events in patients with hereditary AT deficiency. Not indicated for treatment of thromboembolic events.

Class Summary

Class Summary

For antithrombin replacement, the clinical goal is to maintain the level of antithrombin activity at 80% or greater for full effect. Serial monitoring of levels is necessary to ensure an adequate level. The anticoagulant effect of heparin is enhanced by antithrombin; thus, for heparinized patients, monitoring of the aPTT is necessary to determine the need to reduce the heparin dosage when heparin is being concomitantly administered with antithrombin.

Dosage calculation guidelines

The required dose of AT concentrate = (% desired – % baseline) × body weight (kg) divided by 1.4.

This calculation is based on an expected rise of 1.4% with 1 IU/kg given intravenously. Recoveries vary from patient to patient and are also affected by the underlying disease. Therefore, baseline and 20-minute post-infusion samples should be tested for antithrombin activity to determine the initial response to a dose. Subsequently, pre-dose trough level and immediate post-dose values provide trough and peak values to help in further dosing. Maintaining antithrombin activity levels of approximately 80% normal serum values are suggested. Surgery, bleeding, and active thrombosis affect the half-life of this product, but the duration of effect in normal volunteers was 22 hours. Following the initial loading dose, antithrombin activity levels rise to ~120%, and approximately 60% of that dose should be administered every 24 hours as a maintenance dose.

Pooled plasma, solvent-detergent treated (PLAS+SD)

Clinical Context:  See details of discussion under Medical Care. SD treatment of pooled human plasma removes lipid-enveloped viruses, making this product safer than untreated FFP. SD treatment, however, does not remove all viruses from plasma. Efficacy and safety has been proven in the treatment of several coagulopathies. Per the package insert from the American Red Cross, the half-life of the coagulation factors in recipients of this product were similar to normal values at the time they were measured.

If available, SD-treated plasma can be used in patients with alpha2-antiplasmin deficiency, because no concentrate is available to treat this coagulation factor deficiency. As with any bleeding disorder, serial measurement of the specific coagulation factor in question is essential to assure hemostatic adequacy of levels. On average, 1 U of SD plasma raises factor levels by ~2-3%, whereas 4-6 U raises factor levels by ~8-18% in a 70-kg person. These numbers do not specifically apply to alpha2-antiplasmin and are being provided only as a general guide.

Serial monitoring of required alpha2-antiplasmin levels is necessary to follow these patients. This product should be stored at -18°C or colder, and thawed at 30-37°C in a water bath with very gentle shaking; once thawed, keep at room temperature and use as soon as possible, preferably within 24 h. Do not store thawed material in the cold.

Class Summary

Use inhibitors of fibrinolysis together with FFP replacement for minor surgical procedures (eg, dental extractions, sinus surgery) so that they can be accomplished on an outpatient basis with the use of a single dose of product.

Concern about the possible relationship to acute thrombotic events remains, although a causal relationship is being questioned because the underlying disease state determines the site and extent of thrombosis.

Author

Bryan A Mitton, MD, PhD, Clinical Instructor, Division of Pediatric Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Angela Steineck, MD, Resident Physician, Department of Pediatrics, Stanford University School of Medicine

Disclosure: Nothing to disclose.

Specialty Editors

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Marcel E Conrad, MD, Distinguished Professor of Medicine (Retired), University of South Alabama College of Medicine

Disclosure: Partner received none from No financial interests for none.

Chief Editor

Perumal Thiagarajan, MD, Professor, Department of Pathology and Medicine, Baylor College of Medicine; Director, Transfusion Medicine and Hematology Laboratory, Michael E DeBakey Veterans Affairs Medical Center

Disclosure: Nothing to disclose.

Additional Contributors

David Aboulafia, MD, Medical Director, Bailey-Boushay House, Clinical Professor, Department of Medicine, Division of Hematology, Attending Physician, Section of Hematology/Oncology, Virginia Mason Clinic; Investigator, Virginia Mason Community Clinic Oncology Program/SWOG

Disclosure: Nothing to disclose.

Acknowledgements

Sara J Grethlein, MD Associate Dean for Undergraduate Medical Education, Indiana University School of Medicine

Sara J Grethlein, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Society of Clinical Oncology, and American Society of Hematology

Disclosure: Nothing to disclose.

Rajalaxmi McKenna, MD, FACP Southwest Medical Consultants, SC, Department of Medicine, Good Samaritan Hospital, Advocate Health Systems

Rajalaxmi McKenna, MD, FACP is a member of the following medical societies: American Society of Clinical Oncology, American Society of Hematology, and International Society on Thrombosis and Haemostasis

Disclosure: Nothing to disclose.

Arun Rajan, MD Clinical Fellow, Medical Oncology Branch, National Cancer Institute/National Institutes of Health

Arun Rajan, MD is a member of the following medical societies: American Medical Association and American Society of Clinical Oncology

Disclosure: Nothing to disclose.

References

  1. van Ommen CH, Nowak-Göttl U. Inherited Thrombophilia in Pediatric Venous Thromboembolic Disease: Why and Who to Test. Front Pediatr. 2017. 5:50. [View Abstract]
  2. Ormesher L, Simcox L, Tower C, Greer IA. Management of inherited thrombophilia in pregnancy. Womens Health (Lond). 2016 Jul. 12 (4):433-41. [View Abstract]
  3. Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh. 1965 Jun 15. 13:516-30. [View Abstract]
  4. Abildgaard U. Antithrombin--early prophecies and present challenges. Thromb Haemost. 2007 Jul. 98(1):97-104. [View Abstract]
  5. Olds RJ, Lane DA, Mille B, Chowdhury V, Thein SL. Antithrombin: the principal inhibitor of thrombin. Semin Thromb Hemost. 1994. 20(4):353-72. [View Abstract]
  6. Rosenberg JS, McKenna PW, Rosenberg RD. Inhibition of human factor IXa by human antithrombin. J Biol Chem. 1975 Dec 10. 250(23):8883-8. [View Abstract]
  7. Stead N, Kaplan AP, Rosenberg RD. Inhibition of activated factor XII by antithrombin-heparin cofactor. J Biol Chem. 1976 Nov 10. 251(21):6481-8. [View Abstract]
  8. Rao LV, Nordfang O, Hoang AD, Pendurthi UR. Mechanism of antithrombin III inhibition of factor VIIa/tissue factor activity on cell surfaces. Comparison with tissue factor pathway inhibitor/factor Xa-induced inhibition of factor VIIa/tissue factor activity. Blood. 1995 Jan 1. 85(1):121-9. [View Abstract]
  9. Okajima K, Uchiba M. The anti-inflammatory properties of antithrombin III: new therapeutic implications. Semin Thromb Hemost. 1998. 24(1):27-32. [View Abstract]
  10. Yamashiro K, Kiryu J, Tsujikawa A, et al. Inhibitory effects of antithrombin III against leukocyte rolling and infiltration during endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2001 Jun. 42(7):1553-60. [View Abstract]
  11. Dunzendorfer S, Kaneider N, Rabensteiner A, et al. Cell-surface heparan sulfate proteoglycan-mediated regulation of human neutrophil migration by the serpin antithrombin III. Blood. 2001 Feb 15. 97(4):1079-85. [View Abstract]
  12. Foy P, Moll S. Thrombophilia: 2009 update. Curr Treat Options Cardiovasc Med. 2009 Apr. 11(2):114-28. [View Abstract]
  13. Picard V, Chen JM, Tardy B, Aillaud MF, Boiteux-Vergnes C, Dreyfus M, et al. Detection and characterisation of large SERPINC1 deletions in type I inherited antithrombin deficiency. Hum Genet. 2009 Sep 17. [View Abstract]
  14. Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000 Oct 19. 407(6806):923-6. [View Abstract]
  15. van Boven HH, Lane DA. Antithrombin and its inherited deficiency states. Semin Hematol. 1997 Jul. 34(3):188-204. [View Abstract]
  16. Maclean PS, Tait RC. Hereditary and acquired antithrombin deficiency: epidemiology, pathogenesis and treatment options. Drugs. 2007. 67(10):1429-40. [View Abstract]
  17. Undas A, Brummel K, Musial J, Mann KG, Szczeklik A. Blood coagulation at the site of microvascular injury: effects of low-dose aspirin. Blood. 2001 Oct 15. 98(8):2423-31. [View Abstract]
  18. Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis. 2002 Dec. 13(8):657-70. [View Abstract]
  19. van Boven HH, Vandenbroucke JP, Briët E, Rosendaal FR. Gene-gene and gene-environment interactions determine risk of thrombosis in families with inherited antithrombin deficiency. Blood. 1999 Oct 15. 94(8):2590-4. [View Abstract]
  20. Oelschläger C, Römisch J, Staubitz A, Stauss H, Leithäuser B, Tillmanns H, et al. Antithrombin III inhibits nuclear factor kappaB activation in human monocytes and vascular endothelial cells. Blood. 2002 Jun 1. 99(11):4015-20. [View Abstract]
  21. Larsson H, Sjöblom T, Dixelius J, Ostman A, Ylinenjärvi K, Björk I. Antiangiogenic effects of latent antithrombin through perturbed cell-matrix interactions and apoptosis of endothelial cells. Cancer Res. 2000 Dec 1. 60(23):6723-9. [View Abstract]
  22. Niebler RA, Christensen M, Berens R, Wellner H, Mikhailov T, Tweddell JS. Antithrombin replacement during extracorporeal membrane oxygenation. Artif Organs. 2011 Nov. 35(11):1024-8. [View Abstract]
  23. Pabinger I, Vossen CY, Lang J, Conard J, García-Dabrio MC, Miesbach W, et al. Mortality and inherited thrombophilia: results from the European Prospective Cohort on Thrombophilia. J Thromb Haemost. 2012 Feb. 10(2):217-22. [View Abstract]
  24. Picard V, Nowak-Gottl U, Biron-Andreani C, et al. Molecular bases of antithrombin deficiency: twenty-two novel mutations in the antithrombin gene. Hum Mutat. 2006 Jun. 27(6):600. [View Abstract]
  25. Sarper N, Orlando C, Demirsoy U, Gelen SA, Jochmans K. Homozygous antithrombin deficiency in adolescents presenting with lower extremity thrombosis and renal complications: two case reports from Turkey. J Pediatr Hematol Oncol. 2014 Apr. 36 (3):e190-2. [View Abstract]
  26. Wickstrom K, Edelstam G, Lowbeer CH, Hansson LO, Siegbahn A. Reference intervals for plasma levels of fibronectin, von Willebrand factor, free protein S and antithrombin during third-trimester pregnancy. Scand J Clin Lab Invest. 2004. 64(1):31-40. [View Abstract]
  27. Cooper PC, Coath F, Daly ME, Makris M. The phenotypic and genetic assessment of antithrombin deficiency. Int J Lab Hematol. 2011 Jun. 33(3):227-37. [View Abstract]
  28. Bayston T, Lane D, for the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Antithrombin mutation database. Imperial College London. Available at http://www1.imperial.ac.uk/medicine/about/divisions/is/haemo/coag/antithrombin/. Accessed: December 12, 2008.
  29. Yamada T, Kuwata T, Matsuda H, Deguchi K, Morikawa M, Yamada T, et al. Risk Factors of Eclampsia Other Than Hypertension: Pregnancy-Induced Antithrombin Deficiency and Extraordinary Weight Gain. Hypertens Pregnancy. 2011 Dec 9. [View Abstract]
  30. Bacciedoni V, Attie M, Donato H, Comité Nacional de Hematología, Oncología y Medicina Transfusional. Thrombosis in newborn infants. Arch Argent Pediatr. 2016 Apr. 114 (2):159-66. [View Abstract]
  31. Morikawa M, Yamada T, Kataoka S, et al. Changes in antithrombin activity and platelet counts in the late stage of twin and triplet pregnancies. Semin Thromb Hemost. 2005 Jun. 31(3):290-6. [View Abstract]
  32. D''Uva M, Di Micco P, Strina I, Ranieri A, Alviggi C, Mollo A, et al. Etiology of hypercoagulable state in women with recurrent fetal loss without other causes of miscarriage from Southern Italy: new clinical target for antithrombotic therapy. Biologics. 2008 Dec. 2(4):897-902. [View Abstract]
  33. Hara T, Naito K. Inherited antithrombin deficiency and end stage renal disease. Med Sci Monit. 2005 Nov. 11(11):RA346-54. [View Abstract]
  34. Bushman JE, Palmieri D, Whinna HC, Church FC. Insight into the mechanism of asparaginase-induced depletion of antithrombin III in treatment of childhood acute lymphoblastic leukemia. Leuk Res. 2000 Jul. 24(7):559-65. [View Abstract]
  35. McColl M, Tait RC, Walker ID, et al. Low thrombosis rate seen in blood donors and their relatives with inherited deficiencies of antithrombin and protein C: correlation with type of defect, family history, and absence of the factor V Leiden mutation. Blood Coagul Fibrinolysis. 1996 Oct. 7(7):689-94. [View Abstract]
  36. Morikawa M, Kawabata K, Kato-Hirayama E, Oda Y, Ueda H, Kataoka S, et al. Liver dysfunction in women with pregnancy-induced antithrombin deficiency. J Obstet Gynaecol Res. 2017 Feb. 43 (2):257-264. [View Abstract]
  37. Martinelli I, Mannucci PM, De Stefano V, et al. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood. 1998 Oct 1. 92(7):2353-8. [View Abstract]
  38. Tait RC, Walker ID, Perry DJ et al. Prevalence of antithrombin III deficiency subtypes in 4000 healthy blood donors [abstract]. Thromb Haemost. 1991. 65:839.
  39. Mesters RM, Mannucci PM, Coppola R, Keller T, Ostermann H, Kienast J. Factor VIIa and antithrombin III activity during severe sepsis and septic shock in neutropenic patients. Blood. 1996 Aug 1. 88(3):881-6. [View Abstract]
  40. Eisele B, Lamy M, Thijs LG, Keinecke HO, Schuster HP, Matthias FR. Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998 Jul. 24(7):663-72. [View Abstract]
  41. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001 Oct 17. 286(15):1869-78. [View Abstract]
  42. Wiedermann CJ, Hoffmann JN, Juers M, Ostermann H, Kienast J, Briegel J, et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit Care Med. 2006 Feb. 34(2):285-92. [View Abstract]
  43. Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost. 2014 Sep. 12 (9):1470-9. [View Abstract]
  44. Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T, et al. Disseminated intravascular coagulation (DIC) diagnosed based on the Japanese Association for Acute Medicine criteria is a dependent continuum to overt DIC in patients with sepsis. Thromb Res. 2009 Mar. 123(5):715-8. [View Abstract]
  45. Kurihara M, Watanabe K, Inoue S, et al. Characterization of two novel mutations of the antithrombin gene observed in Japanese thrombophilic patients. Thromb Res. 2005. 115(5):351-8. [View Abstract]
  46. Roozendaal B, Schoorlemmer GH, Wiersma A, et al. Opposite effects of central amygdaloid vasopressin and oxytocin on the regulation of conditioned stress responses in male rats. Ann N Y Acad Sci. 1992 Jun 12. 652:460-1. [View Abstract]
  47. Patnaik MM, Moll S. Inherited antithrombin deficiency: a review. Haemophilia. 2008 Nov. 14(6):1229-39. [View Abstract]
  48. Alvi AR, Khan S, Niazi SK, Ghulam M, Bibi S. Acute mesenteric venous thrombosis: improved outcome with early diagnosis and prompt anticoagulation therapy. Int J Surg. 2009 Jun. 7(3):210-3. [View Abstract]
  49. Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion. 2009 Aug 4. [View Abstract]
  50. Rodgers GM. Role of antithrombin concentrate in treatment of hereditary antithrombin deficiency. An update. Thromb Haemost. 2009 May. 101(5):806-12. [View Abstract]
  51. Azzi A, De Santis R, Morfini M, et al. TT virus contaminates first-generation recombinant factor VIII concentrates. Blood. 2001 Oct 15. 98(8):2571-3. [View Abstract]
  52. MediView Express. Recombinant therapy enhances safety and quality of life for hemophilia patients. Paper presented at: 53rd Annual Meeting of the National Hemophilia Foundation; November 16, 2001; Nashville, Tennessee.
  53. Stevens SM, Woller SC, Bauer KA, Kasthuri R, Cushman M, Streiff M, et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis. 2016 Jan. 41 (1):154-64. [View Abstract]
  54. Rigas B, Hasan I, Rehman R, et al. Effect on treatment outcome of coinfection with SEN viruses in patients with hepatitis C. Lancet. 2001 Dec 8. 358(9297):1961-2. [View Abstract]
  55. PLAS+SD (Pooled Plasma, (Human) Solvent Detergent Treated). [package insert]. Watertown, Mass: V. I. Technologies, Inc. (VITEX). Distributed by the American National Red Cross, Blood Services, Washington, DC. 2000.
  56. Fergusson DA, Hebert PC, Mazer CD, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008 May 29. 358(22):2319-31. [View Abstract]
  57. Nishimura Y, Takagi Y. Strategy for Cardiovascular Surgery in Patients with Antithrombin III Deficiency. Ann Thorac Cardiovasc Surg. 2018 Aug 20. 24 (4):187-192. [View Abstract]
  58. Paidas MJ, Triche EW, James AH, DeSancho M, Robinson C, Lazarchick J, et al. Recombinant Human Antithrombin in Pregnant Patients with Hereditary Antithrombin Deficiency: Integrated Analysis of Clinical Data. Am J Perinatol. 2016 Mar. 33 (4):343-9. [View Abstract]
  59. Kawai H, Matsushita H, Kawada H, Ogawa Y, Ando K. The Successful Prevention of Thromboembolism Using Rivaroxaban in a Patient with Antithrombin Deficiency during the Perioperative Period. Intern Med. 2017 Sep 1. 56 (17):2339-2342. [View Abstract]
  60. Minami K, Kumagai K, Sugai Y, Nakamura K, Naito S, Oshima S. Efficacy of Oral Factor Xa Inhibitor for Venous Thromboembolism in a Patient with Antithrombin Deficiency. Intern Med. 2018 Jul 15. 57 (14):2025-2028. [View Abstract]
  61. [Guideline] American College of Obstetricians and Gynecologists Women's Health Care Physicians. ACOG Practice Bulletin No. 138: Inherited thrombophilias in pregnancy. Obstet Gynecol. 2013 Sep. 122 (3):706-17. [View Abstract]
  62. [Guideline] Bates SM, Jaeschke R, Stevens SM, Goodacre S, Wells PS, Stevenson MD, et al. Diagnosis of DVT: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb. 141 (2 Suppl):e351S-e418S. [View Abstract]
  63. [Guideline] Royal College of Obstetricians and Gynaecologists. Thrombosis and Embolism during Pregnancy and the Puerperium, Reducing the Risk (Green-top Guideline No. 37a). RCOG.org. Available at https://www.rcog.org.uk/globalassets/documents/guidelines/gtg-37a.pdf. April 13, 2015; Accessed: March 29, 2018.

Antithrombin sites of action.

Antithrombin (AT) neutralizes the enzyme (IIa) by forming a 1:1 stoichiometric complex (AT:IIa) between the arginine-serine sites of the 2 proteins. Binding of heparin to lysyl residues on AT results in a conformational change in AT, which makes it more available to bind thrombin (IIa), IXa, and Xa, thus markedly accelerating the rate of enzyme-inhibitor complex formation. AT also neutralizes XIa and XIIa.

Antithrombin (AT) neutralizes the enzyme (IIa) by forming a 1:1 stoichiometric complex (AT:IIa) between the arginine-serine sites of the 2 proteins. Binding of heparin to lysyl residues on AT results in a conformational change in AT, which makes it more available to bind thrombin (IIa), IXa, and Xa, thus markedly accelerating the rate of enzyme-inhibitor complex formation. AT also neutralizes XIa and XIIa.

Cell surface–directed hemostasis (image adapted from Hoffman M, Monroe DM 3rd. A cell-based model of hemostasis. Thromb Haemost. 2001). Initially, a small amount of thrombin is generated on the surface of the tissue factor–bearing (TF-bearing) cell. Following amplification, the second burst generates a larger amount of thrombin, leading to fibrin (clot) formation.

Antithrombin sites of action.