Hookworm Disease

Back

Background

Human hookworm disease is a common helminth infection that is predominantly caused by the nematode parasites Necator americanus and Ancylostoma duodenale; organisms that play a lesser role include Ancylostoma ceylonicum, Ancylostoma braziliense, and Ancylostoma caninum. Hookworm infection is acquired through skin exposure to larvae in soil contaminated by human feces (see the image below). Soil becomes infectious about 9 days after contamination and remains so for weeks, depending on conditions.



View Image

Ground itch associated with penetration of skin by hookworm larvae.

Worldwide, hookworms infect an estimated 472 million people. Although most of those affected are asymptomatic,[1, 2] approximately 10% experience anemia. Hookworms may persist for many years in the host and impair the physical and intellectual development of children and the economic development of communities.

Historically, hookworm infection has disproportionately affected the poorest among the least-developed nations, largely as a consequence of inadequate access to clean water, sanitation, and health education. The frequent absence of symptoms notwithstanding, hookworm disease substantially contributes to the incidence of anemia and malnutrition in developing nations.[3] It occurs most commonly in the rural tropical and subtropical areas of Asia, sub-Saharan Africa, and Latin America.[1]

Individual hookworm treatment consists of iron replacement and anthelmintic therapy. Community eradication has proven difficult, even with intensive, yearly, school-based programs. Part of the difficulty may be failure to clear infection from adults with high worm burden. Despite this, successful control and eradication of hookworms is a worthy goal for new methods that could offer huge economic and social benefits to much of Africa and Asia.

See Common Intestinal Parasites, a Critical Images slideshow, to help make an accurate diagnosis.

Pathophysiology

Hookworm life cycle

The life cycle of hookworms (see the image below) begins with the passing of hookworm eggs in human feces and their deposition into the soil.[4, 5]



View Image

Life cycle of hookworm. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Each day in the intestine, a mature female A duodenale worm produces about 10,000-30,000 eggs, and a mature female N americanus worm produces 5000-10,000 eggs (see the image below). After deposition onto soil and under appropriate conditions, each egg develops into an infective larva. These larvae are developmentally arrested and nonfeeding. If they are unable to infect a new host, they die when their metabolic reserves are exhausted, usually in about 6 weeks.



View Image

Hookworm egg. Image courtesy of Patrick W Hickey, MD.

Larval growth is most proliferative in favorable soil that is sandy and moist, with an optimal temperature of 20-30°C. Under these conditions, the larvae hatch in 1 or 2 days to become rhabditiform larvae, also known as L1 (see the image below).



View Image

Hookworm rhabditiform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

The rhabditiform larvae feed on the feces and undergo 2 successive molts; after 5-10 days, they become infective filariform larvae, or L3 (see the image below). These L3 go through developmental arrest and can survive in damp soil for as long as 2 years. However, they quickly become desiccated if exposed to direct sunlight, drying, or salt water. L3 live in the top 2.5 cm of soil and move vertically toward moisture and oxygen.



View Image

Hookworm filariform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

The L3 larvae are 500-700 µm long (barely visible to the naked eye) and are capable of rapid penetration into normal skin, most commonly on the hands or feet. Transmission occurs after 5 or more minutes of skin contact with soil that contains viable larvae. The skin penetration may cause a local pruritic dermatitis, also known as ground itch. Ground itch at the site of penetration is more common with Ancylostoma than with Necator.

The larvae migrate through the dermis, entering the bloodstream and moving to the lungs within 10 days. Once in the lungs, they break into alveoli, causing a mild and usually asymptomatic alveolitis with eosinophilia. (Hookworms are among the causes of the pulmonary infiltrates and eosinophilia [PIE] syndrome, along with Ascaris and Strongyloides species.)

Having penetrated the alveoli, the larvae are carried to the glottis by means of the ciliary action of the respiratory tract. During pulmonary migration, the host may develop a mild reactive cough, sore throat, and fever that resolve after the worm migrates into the intestines. At the glottis, the larvae are swallowed and carried to their final destination, the small intestine.

During this part of the migration, the larvae undergo 2 further molts, developing a buccal capsule and attaining their adult form. The buccal capsule of an adult A duodenale has teeth to facilitate attachment to mucosa, whereas an adult N americanus has cutting plates instead. A muscular esophagus creates suction in the buccal capsule.

Using their buccal capsule, the adult worms attach themselves to the mucosal layer of the proximal small intestine, including the lower part of the duodenum, jejunum, and proximal ileum (see the image below). In so doing, they rupture the arterioles and venules along the luminal surface of the intestine.



View Image

Adult hookworm attached to duodenal mucosa.

The adult worms release hyaluronidase, which degrades intestinal mucosa and erodes blood vessels, resulting in blood extravasation. They also ingest some blood. An anticoagulant facilitates blood flow by blocking the activity of factors Xa and VIIa. Adult worms also elaborate factors (eg, neutrophil inhibitory factor) that protect them from host defenses.

In 3-5 weeks, the adults become sexually mature, and the female worms begin to produce eggs that appear in the feces of the host.

Although N americanus infects only percutaneously, A duodenale can also infect by means of ingestion; however, in su Ancylostoma may also lie dormant in tissues and later be transmitted through breast milk. This ability to enter dormancy in the human host may be an adaptive response evolved to increase the chances of propagation. If all larvae were to mature promptly during dry seasons of the year, females would release eggs onto inhospitable soil. Eggs produced and released during the wet season have a much greater chance of encountering optimal soil conditions for further development.

Neither Necator nor Ancylostoma multiplies within the host. If the host is not reexposed, the infection disappears after the worm dies. The natural life span for an adult A duodenale is about 1 year, and that for an adult N americanus is 3-5 years.

Types of hookworm disease

Hookworm infection gives rise to the following 3 clinical entities in humans:

In cutaneous larva migrans, the infective larvae of zoonotic species such as A braziliense do not elaborate sufficient concentrations of hydrolytic enzymes to penetrate the junction of the dermis and epidermis. The larvae thus remain trapped superficial to this layer, where they migrate laterally at a rate of 1-2 cm/day and create the pathognomonic serpiginous tunnels associated with this condition. Larvae can survive in the skin for about 10 days before dying.

In eosinophilic enteritis, A caninum larvae typically enter a human host by penetrating the skin, though infection by oral ingestion is also possible. These larvae probably remain dormant in skeletal muscles and create no symptoms. In some individuals, larvae may reach the gut and mature into adult worms.

Why some individuals sustain A caninum development and then respond with a severe localized allergic reaction is unknown. Adult worms secrete various potential allergens into the intestinal mucosa. Some patients have been reported to experience increasingly severe recurrent abdominal pain, which may be analogous to a response to repeated insect stings.

Clinical manifestations

Intestinal blood loss secondary is the major clinical manifestation of hookworm infection.[6] In fact, hookworm disease historically refers to the childhood syndrome of iron deficiency anemia, protein malnutrition, growth and mental retardation with lethargy resulting from chronic intestinal blood loss secondary to hookworm infection in the face of an iron deficient diet.

Hookworms ingest and digested some of the blood from the injured mucosa by means of a multienzyme cascade of metallohemoglobinases. Each Necator worm ingests 0.03 mL of blood daily, whereas each Ancylostoma worm ingests 0.15-0.2 mL of blood daily. Inhibited host coagulation due to a series of anticoagulants directed against factor Xa and the factor VIIa–tissue factor (TF) complex, as well as against platelet aggregation, further exacerbates blood loss.

The amount of blood loss and the degree of anemia are positively correlated with the worm burden, whereas hemoglobin, serum ferritin, protoporphyrin levels are significantly and negatively correlated with the number of worms.[4] Threshold worm loads for anemia differ nationally, with as few as 40 worms producing anemia in countries with low iron consumption.

Generally, the extent of hookworm infection may be categorized as follows:

People who develop an initial heavy infection seem to reacquire heavy infection, and individuals who are lightly infected reacquire light infections. Since each adult worm is the molt of a single infective larva, this suggests continuing exposure to highly contaminated environments with little amnestic immunity in the host. Individuals with light infection have minimal blood loss and may have infection but not disease, especially if iron intake or reserves are adequate to compensate for the blood loss. Moderate-to-heavy infections cause iron-deficiency anemia.

In addition, because A duodenale consumes more blood per worm than N americanus does, the severity of anemia may differ as a factor of the hookworm species that is causing the infection. Severe anemia affects intellectual and physical development in children and cardiovascular performance in adults.

Because of the clinically significant blood loss and the worm's ingestion of serum proteins, hypoproteinemia may also develop, which is clinically manifested as weight-loss, anasarca, and edema.

This is the result of a protein-losing enteropathy, with immunoglobulins among the proteins lost as a result of worm digestion. This results in stunted growth, as well as an increased susceptibility to infections such as malaria and gastrointestinal infections with enteric bacteria, viruses, and protozoa. This protein-losing enteropathy can also contribute to a more rapid progression of an HIV infection. In patients with high enough iron intake, enteropathy may occur independent of anemia.

Hookworms appear to evade or inhibit effective human immune responses. The persistence of hookworm infection supports the theory that the worms have evolved adaptive molecular mechanisms to achieve a homeostatic balance with the host immune response.[6, 7, 8, 9]

Little is known about the innate immune response to metazoan in general and hookworms in particular.[10] Hookworm-derived pathogen-associated molecular patterns (PAMPS) of molecules are thought to react with receptors on dentritic cells or basophiles to stimulate interleukin (IL)–4 and initiate an immunological cascade resulting in a type 2 regulatory response from Th2 helper cells. This may be augmented by “alarmins” such as thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 released from epithelial cells damaged by worms. These activate newly described innate lymphoid type-2 cells (ILC2) that provide early rise in protective TH2 cytokines IL-5 and IL-13.

Meanwhile, worm products inhibit IL-12 and TSLP induces basophil production of IL-4, both promoting differentiation of Th2 cells. The antiparasite Th2 cells produce more IL-4, IL-5, and IL-13, which cause B cell immunoglobulin G type 1 (IgG1) and immunoglobulin E (IgE) class switching. Antiworm IgE binds the parasite and actives mast cells, which release inflammatory molecules, while IL-5 promotes eosinophil expansion and activation and M2 macrophage differentiation, which damage and produce granulomas, respectively. Other effector molecules include transforming growth factor-beta (TGF-b), resistinlike molecule (RELM)–alpha, chitinases, and matrix metalloproteases, all of which damage or limit the parasite.

At the same time, this intense Th2 immune response must be regulated by the host to avoid immunopathology, and by the parasite to allow survival. Helminths enhance expression of T cell co-inhibitory molecules that include PD-1 and CTLA-4, and promote differentiation of tolerogenic dentric cells and T regulatory cells. T regulatory cells produce anti-inflammatory cytokines IL-10 and TGF-b. Hookworms also appear to secrete an inhibitor of natural killer cells, thereby suppressing production of interferon gamma and the Th2 response that would be expected to clear the parasite.

Since 1989 with David Strachan’s observation of a correlation between incidence of hay fever in children and low family size, the hygiene hypothesis has excited investigators as to a possible inverse relationship between helminth infections and allergic and autoimmune disease.

The increased prevalence of atopy, asthma, and food allergy in areas free of worm infestation has been cited as supportive of the hygiene hypothesis and has even prompted investigation of worms or worm products as therapy for such diseases. Similarly, areas of high hookworm endemicity have low rates of reaction to dust mite antigens. It is thought that worm-activated regulatory and counter-regulatory processes involving Th2 and T regulatory cells and cell products may paradoxically inhibit Th2 responses that in the absence of worms, cause reactions to potential allergens.

In the search for possible vaccine targets, investigators have focused on hookworm molecular inhibitors of coagulation factors Xa and VIIa-TF and metalloproteases that degrade hemoglobin and intestinal mucosal cells. The Sabin Vaccine Institute has developed a 2 antigen human hookworm vaccine comprising recombinant Necator antigens Na- GST-1 and Na- APR-1, each of which is required for hookworm use of host blood.[11] Another antigen, Ancylostoma -secreted protein 2 (ASP-2), appears necessary for chemokine receptor binding and invasion and has shown some promise in animal vaccine trials. The 3-dimensional structure of Na-ASP-2 has recently been reported and identified as a conserved tandem histidine motif necessary for catalytic or proteolytic activity.[12] Unfortunately, this vaccine produced urticarial reactions among previously infected recipients, and its development was halted.[13]

Etiology

Causative organisms

Organisms that have been shown to cause hookworm disease include the following:

N americanus is the globally predominant human hookworm and is the only member of its genus known to infect humans.[14] It is a small, cylindrical, off-white worm; adult males measure 7-9 mm, and adult females measure 9-11 mm.[4]

A duodenale is more geographically restricted than N americanus and is one of several anthropophilic members of the genus Ancylostoma. It primarily infects humans and is responsible for classic hookworm disease. A duodenale resembles N americanus in appearance but is somewhat larger, with adult males measuring 8-11 mm and adult females measuring 10-13 mm.

On microscopy, N americanus can be differentiated from A duodenale on the basis of the cutting plates that it possesses in place of teeth (see the images below).[15]



View Image

Adult Necator americanus worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.



View Image

Adult Ancylostoma duodenale worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.

A ceylonicum primarily infects canines and felines but can cause milder classic hookworm disease in humans. A braziliense is a canine and feline hookworm that, in humans, causes cutaneous larva migrans, or creeping eruption, a self-limiting condition characterized by serpiginous burrows formed as the larvae migrate through the epidermis. A caninum is a canine hookworm that mainly causes eosinophilic enteritis in humans (though it also causes cutaneous larva migrans in a minority of cases).

Risk factors

Poor sanitation, limited access to clean water, and low income are well-documented risk factors for hookworm infection. High-risk populations include international travelers, refugees, international adoptees, and recent immigrants.[16]

Favorable environmental conditions conduce to the development of hookworm disease. Optimal conditions for eggs include ambient temperatures of 20-30°C and warm, moist, well-aerated soil that is shielded from sunlight. These conditions occur during cultivation of numerous agricultural products; hence, hookworm infections occur primarily in rural areas. Larvae fail to develop in temperatures below 13°C and are destroyed by temperatures below 0°C and above 45°C. They are also killed by drying and direct sunlight.

Epidemiology

United States statistics

Although hookworm infection is now thought to be rare in the United States, hookworm played an important role in the impoverishment of the southeastern region of the country until the 1930s. Studies performed in the early 1970s indicated prevalences as high as 14.8% among schoolchildren from rural Kentucky and as high as 12% among schoolchildren from rural coastal Georgia. A low prevalence of classic hookworm infection, mainly due to N americanus, is still found in pockets of the southeastern United States. A 2017 report demonstrated 39% prevalence of N americanus among 24 rural households in Lowndes County, Alabama, who depended on poorly functioning septic tank systems, suggesting continued vulnerability of rural poor populations, even today.[17]

Hookworm infection and disease are now most likely to be found in immigrants, refugees, and adoptees from tropical countries. Occasionally, people returning from travel abroad present with acute watery diarrhea with eosinophilia upon their return to the United States.

Cutaneous larva migrans is endemic in the southeastern states and Puerto Rico. The canine hookworm A caninum has reportedly caused eosinophilic enteritis in Australia and the United States.

International statistics

Human infection with A duodenale or N americanus is estimated to affect approximately 472 million people worldwide.[18, 19, 20] These parasites drain the equivalent of all the blood from approximately 1.5 million people every day.

Infection is most prevalent in tropical and subtropical zones, roughly between the latitudes of 45°N and 30°S; in some communities, prevalence may be as high as 90%. The disease flourishes in rural communities with moist shaded soil and inadequate latrines. Agricultural laborers have traditionally been at high risk. Improper disposal of human feces and the common habit of walking barefoot are key epidemiologic features. However, the use of footwear has not been shown to affect hookworm prevalence, in that the larvae can invade through any skin surface.

In 2010, it was estimated that 117 million individuals in sub-Saharan Africa were infected with hookworms, as well as 64 million in East Asia, 140 million in South Asia, 77 million in Southeast Asia, 30 million in Latin America and the Caribbean, 10 million in Oceania, and 4.6 million in the Middle East and North Africa. Oceania has the highest prevalence (49%), followed by sub-Saharan Africa (13%), Southeast Asia (12.6%), South Asia (8.6%), East Asia (5%), and Latin America/Caribbean (5%).[18] These represent approximately 20% decreases in prevalence from 2005 WHO estimates.

Infection is closely associated with poverty; inadequate sanitation, poor housing construction, and lack of access to essential medications are major factors in this relationship. Studies performed in Brazil indicate that the prevalence and intensity of infection is higher among poorer households. Similar studies in Uganda indicate that in comparison with the spotty geographic prevalence of ascariasis and trichuriasis, hookworm disease is more homogeneously distributed.[21] Recycled human sewerage for fertilizer is now being practiced on a large scale and could pose a risk for epidemic infection.[22]

As countries develop, the factors conducing to hookworm disease are mitigated, and hookworm infestation decreases.[23] In developed countries, infection is most commonly encountered in travelers, immigrants, and adoptees from developing countries.

Both Necator and Ancylostoma species have worldwide distribution. A duodenale predominates in the Mediterranean region, in northern regions of India and China, and in North Africa. A ceylonicum is found in focally endemic areas in southern Asia. N americanus predominates in southern China, Southeast Asia, the Americas, most of Africa, and parts of Australia. This differential distribution is not absolute, and mixed infections may occur in individual patients. Coinfection with Ascaris or Trichuris is common in many parts of the world.

Age- and sex-related demographics

In endemic areas, the highest prevalences are reported among school-aged children and adolescents, possibly because of age-related changes in exposure and the acquisition of immunity.[24] Once infected, children are more vulnerable to developing morbidity because dietary intake often fails to compensate for intestinal losses of iron and protein, especially in developing countries. A fulminant form of acute GI hemorrhage associated with acute Ancylostoma infection has been described in newborns.

Although children bear a large disease burden, hookworm infection appears to have an atypical age distribution. Unlike other soil-transmitted helminth infections, such as ascariasis and trichuriasis (for which the incidence peaks in childhood), hookworm infection appears to increase throughout childhood until it reaches a plateau in adulthood.[25] Studies from China and Brazil indicate a consistently increasing prevalence, from 15% at age 10 years to 60% at age 70 years and older. Egg counts in stool also increase in a similar pattern.

Although adults carry larger worm burdens than children do and are generally more subject to disease, the relationship is nonlinear and depends on diet and activity thresholds. The increasing prevalence of hookworm disease and higher worm burden among adults in many infected communities, especially in China, suggests that hookworm is immunosuppressive.

Males and females are equally susceptible to hookworm infection.

Prognosis

With proper treatment, the prognosis is excellent. Mortality is low, though those hookworm-related deaths that do occur are probably underrecognized as a consequence of the insidious nature of the disease.

In classic hookworm disease, appropriate anthelmintic treatment and iron and diet therapy typically result in complete recovery from anemia and malnutrition, though some deficits in intellectual function may persist. In endemic areas, reinfection is very likely: Most patients become reinfected within months unless they are relocated to an area of significantly improved sanitation.

In cutaneous larva migrans, the larvae die even when no treatment is provided, and symptoms resolve within a few weeks to several months. Eosinophilic enteritis promptly responds to mebendazole therapy.

Anemia remains the most significant clinical consequence of hookworm infection. Hookworms are the leading cause of iron-deficiency anemia in developing countries. Severe anemia retards childhood development and intellectual performance and can cause significant disability in heavily infected communities. Vigorous labor is possible only with hemoglobin levels higher than 7 g/dL.

The timing of anemia onset depends on the patient’s preexisting iron stores. In a study involving 492 children, the prevalence of anemia and the prevalence of ferritin levels lower than 12 μg/L were 60.5% and 33.1%, respectively, in those with N americanus infection, compared with 80.6% and 58.9%, respectively, in those with A duodenale infection.[26]

Young women, especially those who are pregnant, and laborers are most susceptible to symptomatic anemia. Adolescent girls and women of child-bearing age are at particular risk for poor outcomes such as increased maternal mortality, prematurity, low birth weight, and impaired lactation. As many as 30-54% of cases of moderate-to-severe anemia among African and Asian women are attributable to hookworm.

Malabsorption may occur. Heavy infections can cause significant protein loss as the host loses RBCs and plasma. Adult hookworms also secrete a potent inhibitor of digestive enzymes, which may contribute to malabsorption. Malabsorption leads to hypoproteinemia, which aggravates malnutrition. Malabsorption is more common in children than in adults. Anemia and protein malnutrition occur together in as many as 25% of infected individuals.

Patient Education

Patient education focuses on preventive measures. Walking barefoot outdoors in endemic areas should generally be discouraged; however, the effect of wearing proper footwear on hookworm transmission is likely to be overestimated. Inadequate sanitation remains a primary risk factor for hookworm infection.[27, 28] Public health education about proper hygiene and improved sanitation may considerably reduce the risk of infection.

History

The majority of individuals who develop hookworm infection are from known endemic areas. They frequently have a history of wearing open footwear or walking barefoot in such areas.

Most individuals with hookworm infection are asymptomatic,[16] and diagnosis is made only by means of stool examination (see Workup). Those symptoms that do occur depend on the type of hookworm disease present (ie, classic hookworm disease, cutaneous larva migrans, or eosinophilic enteritis) and on the stage of the disease (ie, early or late).

Early symptoms of classic hookworm disease

During the first 1-2 weeks after a cutaneous infection, hookworm produces a local irritation at the site of infection, termed ground itch or dew itch (see the image below).[16] An intensely pruritic, erythematous, or vesicular rash appears, usually on the feet or hands; its severity is generally proportionate to the number of infecting larvae. This rash should be distinguished from a creeping eruption due to skin migration of the cat or dog hookworm A braziliense.



View Image

Ground itch associated with penetration of skin by hookworm larvae.

Cough and wheezing can occur about 1 week after exposure as a consequence of larval migration through the lungs. Pulmonary symptoms are uncommon and usually mild, except in severe infections. In rare cases, severe infections may give rise to Löffler syndrome, characterized by paroxysmal attacks of cough, dyspnea, pleurisy, little or no fever, and eosinophilic pulmonary infiltrates that last several weeks after the initial infection.[25]

Migration of the worms into the gastrointestinal (GI) tract may cause GI discomfort secondary to irritation. As the worms mature in the jejunum, patients may experience diarrhea, vague abdominal pain, colic, flatulence, nausea, or anorexia. These symptoms are more common with initial exposures than with subsequent exposure and typically peak between 30 and 45 days after infection.

In people who have been infected with a large burden of A duodenale through oral ingestion, Wakana syndrome may occur. This syndrome resembles an immediate-type hypersensitivity reaction and is characterized by pharyngeal itching, hoarseness, nausea, vomiting, cough, dyspnea, and eosinophilia.[25]

Later symptoms of classic hookworm disease

Moderate-to-heavy infections cause significant blood loss, which may manifest as melena. Once iron reserves are exhausted, anemia develops. A large worm burden and a history of poor iron intake increase the likelihood of significant anemia.

Patients with severe iron-deficiency anemia may present with lassitude, headache, palpitations, exertional dyspnea, syncope, or edema. They may also have a history of perverted taste and pica. In rare cases, anemia may provoke ischemic symptoms such as angina or claudication.

Deficits in physical and intellectual growth can occur; these deficits may be irreversible when they develop during infancy.

Cutaneous larva migrans

Infection with zoonotic hookworms, especially A braziliense, can progress with a lateral skin migration of larvae that results in the characteristic tracts of cutaneous larva migrans (creeping eruption).[29] This is to be distinguished from the ground itch noted in classic hookworm disease.

Eosinophilic enteritis

Eosinophilic enteritis is characterized by repeated episodes of abdominal pain in approximately 97% of affected individuals. These episodes typically occur with increasing severity and are associated with peripheral eosinophilia in almost 100% of patients and with leukocytosis in approximately 75% of patients. Extreme cases may mimic appendicitis or intestinal perforation.

Physical Examination

Skin and pulmonary findings are minimal. Physical findings in the early (larval migration) stage of the disease differ from those in the late (established GI infection) stage.

Early signs of classic hookworm disease

An erythematous, pruritic, papulovesicular rash develops at the site of initial infection on the palms or soles and may persist for 1-2 weeks after initial infection. Intense scratching may lead to a secondary bacterial infection, which is quite common.

When the worms break through from the venous circulation into the pulmonary air spaces, cough, fever, and a reactive bronchoconstriction may be observed, with wheezing heard on auscultation.

During the period of intestinal involvement, abdominal examination may reveal midepigastric pain on palpation. Stools may be bloody or melanotic.

Later signs of classic hookworm disease

Signs of iron-deficiency anemia are often insensitive. Patients may exhibit pallor, chlorosis (greenish-yellow skin discoloration), hypothermia, spooning nails, tachycardia, or signs of high-output cardiac failure.

Hypoproteinemia may lead to anasarca and peripheral edema.[4] Poor skin texture, edema, and susceptibility to cutaneous infection suggest possible malnutrition. Stunted growth may be observed in children with severe infection.[30]

Cutaneous larva migrans

Cutaneous larva migrans manifests as pathognomonic, raised serpiginous tracts (creeping eruptions) with surrounding erythema that may last as long as 1 month if untreated. Lesions are most commonly seen on lower extremities but may be limited to the trunk or upper extremities, depending on the site at which the infective larvae entered the body.[31]

Complications

Intense exposure resulting in heavy parasitism can produce acute gastrointestinal hemorrhage, severe acute anemia, and congestive heart failure. An early example was an epidemic called “miner’s anemia” striking Italian laborers building the alpine Saint Gotthard railway tunnel in 1880. Today, this occurs most often in epidemics associated with breakdowns in sanitation as a result of war or famine.

More commonly, children with chronic infection perform poorly in school and have decreased productivity.[32, 33, 34, 35] The etiology of this cognitive impairment is probably multifactorial, secondary to both chronic iron-deficiency anemia and missed learning opportunities.

Children with chronic infection may also have linear growth retardation (stunted growth).[30] In one study, children with helminthiasis (including infection caused by hookworms and other helminths) and anemia were 8.7 times more likely to have stunted growth and 4.3 times more likely to be underweight than children without anemia and infection.[36]

In rare cases, neonatal infection with A duodenale contracted through breastfeeding may lead to fulminant GI hemorrhage.

Approach Considerations

Laboratory findings (eg, complete blood count [CBC]) may be consistent with iron-deficiency anemia. A differential count may reveal eosinophilia (1000-4000 cells/µL). Serologic tests (eg, tests for A caninum) are usually available only in research laboratories.

Stool should be examined for ova and parasites. The examination may demonstrate significant number of hookworm eggs. However, because egg laying may be delayed, stool examination should not be considered a sensitive test for identifying hookworm infection. Stool examinations may have to be repeated.

Progress is being made in polymerase chain reaction (PCR)-based methods for the specific diagnosis of hookworm infection.[37, 38]

Other causes of iron loss and blood loss should be excluded.

Blood Studies

Anemia is confirmed by CBC and peripheral blood smear results that demonstrate signs typical of iron-deficiency anemia. Microscopy reveals hypochromic, microcytic red blood cells (RBCs).

Upon initial infection, eosinophilia is usually present during the migratory phase before stool findings are positive.[4] Eosinophilia is surprisingly persistent and may be due to attachment of the adult worms to the intestinal mucosa. Peak eosinophil counts are 1350-3828 cells/µL at 5-9 weeks after experimental human exposure to 45-50 infective larvae. Eosinophilia can be a clue to hookworm, as well as Strongyloides infestation, in chronically infected patients.

Eosinophilia (along with raised serum immunoglobulin E [IgE] levels) is uncommon in cases of cutaneous larva migrans but is almost universally present in cases of eosinophilic enteritis.[39]

Stool Examination

The diagnosis is confirmed with direct microscopic analysis of fecal samples to verify the presence of hookworm eggs. The specimen is fixed in formalin and prepared as a wet mount.[4, 15]

During early infection, results of stool studies may be normal; in rare cases, the worm or larvae may be present in the fecal sample. In patients with mature infection, eggs may be seen during stool examination. If eggs are not seen, the likelihood of clinically significant infection is very low. When infection is suspected, stool should be evaluated promptly because eggs hatch into infective larvae within 24 hours.

Direct microscopic stool examination usually reveals ovoid eggs with thin colorless shells, measuring approximately 60 ´ 40 µm (see the image below). Under basic light microscopy, the eggs of N americanus and those of A duodenale appear morphologically similar. Larvae and adult worms can be distinguished by rearing filariform larvae in a fecal smear on a moist filter paper strip for 5-7 days (ie, Harada-Mori filter paper strip culture).



View Image

Hookworm eggs examined on wet mount. Eggs of Ancylostoma duodenale and Necator americanus cannot be distinguished morphologically. Image courtesy of D....

Distinguishing between N americanus and those of A duodenale is not critically important for choosing the type of anthelmintic drug to use, except that arrested larvae of A duodenale can enter breast milk and cause vertical transmission; these arrested larvae can also reactivate after initial treatment and again cause intestinal disease without reinfection.

Although hookworm eggs are easily distinguished from the eggs of other helminths, rhabditiform larvae are occasionally seen in old stool specimens (see the image below). Differentiating the larvae of Necator or Ancylostoma organisms from those of Strongyloides organisms requires attention to the unique morphologic features, particularly the relatively short buccal cavity and prominent genital primordium of Strongyloides larvae.



View Image

Hookworm rhabditiform larva (wet preparation). Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Various methods (eg, ether concentration or Kato-Katz thick smear) can be used for quantitative assessments. The worm burden may be estimated by counting the number of eggs per gram of stool, multiplying by the daily stool weight, and dividing the result by 25,000. A worm burden of less than 25 is generally subclinical; a burden of more than 500 worms is clinically significant.

In most cases, stool-concentration techniques are unnecessary, because most individuals with clinically significant infection excrete a large number of eggs. Eggs are easily detectable in unconcentrated specimens at levels of 1200/mL or higher. However, such techniques may be helpful for diagnosis of minimal infections expected during control programs. Because the intensity and prevalence of hookworm infection decrease with public health intervention, newer concentration methods (eg, FLOTAC) have some advantages over older methods.[40]

In cases of cutaneous larva migrans, stool examination is not indicated, because the diagnosis can be made clinically and because the larvae remain confined to the skin in almost all cases. In cases of eosinophilic enteritis, no eggs are found, because adult A caninum worms do not produce eggs in human hosts.

Other Studies

In cases of severe infection, chest radiography may show diffuse alveolar infiltrates during the migration of the larvae through the lung. Once infection is established in the gut, imaging studies are not helpful.

In cases of eosinophilic enteritis, colonoscopy may reveal ileal and colonic ulceration and, occasionally, adult hookworms.

Approach Considerations

Most cases of classic hookworm disease can be managed on an outpatient basis with anthelmintic and iron therapy, complemented by appropriate diet. Patients with anemia and malnutrition may require both iron supplements and nutritional support (including folate supplementation). Some patients with severe anemia and congestive heart failure may require hospitalization.

Blood transfusion is indicated in rare cases of acute severe gastrointestinal (GI) hemorrhage. In patients with chronic anemia, blood transfusions (ie, packed red blood cells [RBCs]) should be administered slowly and are usually followed by a diuretic to prevent rapid fluid overload.

For patients with cutaneous larva migrans who have minimal symptoms, specific anthelmintic treatment may be unnecessary.

Eosinophilic enteritis may mimic acute appendicitis or intestinal perforation, and, in some cases, diagnosis has been made during laparotomy. However, treatment for eosinophilic enteritis is medical (ie, mebendazole administration) rather than surgical.

Specialty consultations are usually unnecessary unless the anemia is severe or blood indices are equivocal. The primary physician typically monitors anemia treatment.

Pharmacologic Therapy

Anthelmintic drugs effective against hookworms include benzimidazoles (eg, albendazole, mebendazole) and pyrantel pamoate.[41, 42] Treatments that may be employed include the following:

Albendazole, although not approved by the US Food and Drug Administration (FDA) for hookworm therapy in the United States, continues to have highest apparent cure rate, especially for single-dose therapy. Rates of cure have been decreasing worldwide, possibly due to resistance. A single-dose trial performed in Ghana and reported in 2013 reported a cure rate of only 43%,[44] compared with a 72% cure rate in a 2008 reported systemic review.[45] A 2011 reported trial from China indicated the following cure rates at 3-4 weeks: albendazole single dose 69%, 3 daily doses 92%; and 3 days of 500 mg mebendazole 54%.[46] A 2012 report from Laos demonstrated a single-dose albendazole cure rate of 36% and single 500-mg mebendazole cure rate of 18%.[47] A 2017 systematic review of 30 studies from 1960-2016 demonstrated cure rates of 79.5% with single-dose albendazole.[48]

The Centers for Disease Control and Prevention (CDC) continues to recommend a 400-mg single dose of albendazole on its Website (July 26, 2018), but notes that albendazole is still not FDA approved for the treatment of hookworm infection. The Sanford Guide to Antimicrobial Therapy recommends albendazole 400 mg daily for 3 days or mebendazole 100 mg twice daily for 3 days.

Although benzimidazoles are an effective chemotherapeutic option, reinfection remains a notable problem because exposure to the hookworm does not confer long-term immunity.[49] Rapid hookworm reinfection is common in endemic areas and is made particularly problematic by the high prevalence and worm burden in adults who are untreated and who continue to contaminate soil.

Repeated community treatment may result in an emerging drug resistance.[50, 51] In a Zanzibari population of children treated repeatedly over 5 years, cure and egg elimination rates both decreased significantly with time.[52] This suggests the need for a renewed emphasis on community-wide sanitation, education, and, possibly, vaccine development (see Prevention).[53]

Because of developing resistance in areas with frequent periodic deworming (eg, Java), newer drugs to treat hookworm disease are being sought. Unfortunately, the market for new antiparasitic drugs is small. A promising alternative to albendazole is tribendimidine, a synthetic drug developed in China; in initial trials, tribendimidine appears to be equal or even superior to single-dose albendazole.[54] Other experimental drugs in development include small-molecule inhibitors of nematode carnitine palmitoyltransferase[55] and Bacillus thuringiensis Cry5B protein.[56]

Iron replacement[57, 32, 58] and nutritional supplementation (protein and vitamins, including folate) should be part of the management strategy and may have greater efficacy than anthelmintic therapy in reducing morbidity in selected populations (eg, pregnant women and patients who are not infected with HIV). Such combined therapy has been successful in Peru and Brazil but less so in Kenya.[59, 60] Severe anemia affects children and pregnant women disproportionately because of their low preexisting iron stores.

Wheezing and cough are managed with inhaled beta agonists. Steroids may cause pulmonary symptoms to become exacerbated, particularly in patients with Strongyloides infection.

Treatment in special populations

Young children

Although very rare in nonambulatory children (< 2 years), hookworm infection in this age group can carry significant mortality. A fulminant form of acute hookworm infection causing acute GI tract hemorrhage has been described in infants. The means of transmission is unknown, but likely environmental.[61] These infants (often >2 months) present with melena or frank rectal bleeding, abdominal distention, hypotension, and profound anemia.

Experience with anthelmintic drugs is limited for children in this age group. The World Health Organization (WHO) recommends administering half the adult dosage of albendazole or mebendazole in patients with heavy hookworm infections. The dosage of pyrantel is determined on the basis of the child’s weight.

Published reports addressing the use of albendazole or mebendazole in children younger than 6 years are limited. In 2007, a pair of randomized clinical trials were conducted in Vietnam to evaluate the efficacy of mebendazole.[50] The initial study compared the efficacy of single-dose mebendazole with that of placebo among schoolchildren aged 6-11 years. In this study, single-dose mebendazole did not significantly reduce the disease burden as determined by fecal sample egg counts.

In the follow-up randomized clinical trial, which included subjects aged 16 years and older, triple-dose mebendazole, triple-dose albendazole, and single-dose albendazole were compared with placebo.[50] The findings indicated that triple-dose albendazole was the most effective regimen in these individuals; the cure rate for this regimen was 79%, compared with cure rates of 45% for single-dose albendazole, 35% for placebo, and 26% for triple-dose mebendazole.

Limited studies such as these underscore the observation that drug pharmacokinetics and pharmacodynamics may be altered in pediatric populations or with the use of concomitant anticonvulsants and that additional studies are warranted. Moreover, confounding factors such as sample size, geographic variation, and diagnostic protocols often make direct study comparison difficult.

In 2007, a joint World Bank/WHO conference was held to address the topic of drug efficacy and monitoring in treatment of soil-transmitted helminth infections, with the aim of standardizing large-scale treatment programs. In response, a 2010 study found that in 7 countries, a standardized single-dose albendazole protocol cured 98.2% of Ascaris lumbricoides infections and 87.8% of hookworm infections, but only 46.6% of Trichuris trichiura infections.[62] Additional studies, however, still suggest geographic variations in hookworm sensitivity.[63]

The FDA has approved mebendazole for the treatment of hookworm in children older than 2 years. Albendazole is used off-label for hookworm treatment and is not advised for use in children younger than 6 years. Albendazole appears to be superior to mebendazole for curing hookworm infection in children, achieving cure rates of approximately 90% for Ancylostoma and 75% for Necator. The potential benefits and risks of these agents in pediatric patients must be considered before treatment is pursued.

Pregnant and lactating women

In the past, treatment of pregnant or lactating women was discouraged because of concerns about potential teratogenicity. Currently, these populations are recognized as being at high risk in endemic regions, and treatment may be warranted after careful clinical consideration of the risks and benefits. The WHO recommends deworming treatment (eg, albendazole, mebendazole, or pyrantel pamoate) during the second or third trimester for pregnant women with heavy hookworm infections.

A significant correlation has been observed between maternal anemia (nutritional or parasitic) and an increased risk of bearing premature and low-birth-weight (LBW) infants.[64] In comparison with neonates of average weight, LBW infants subsequently have higher overall morbidity and mortality.

One strategy for reducing the incidence of low birth weight is prenatal treatment of mothers for presumptive parasitic infections. In a clinical trial conducted among pregnant mothers in Peru, where the prevalence of hookworm infection is high, prenatal treatment with mebendazole in addition to iron supplementation brought about a small but significant reduction in the incidence of very-LBW neonates.[59] . Subsequent to this study, however, a 2008 systematic review[65] and another 2012 systematic review[66] both concluded that there was no clear beneficial impact of antihelminthics on anemia in pregnancy or maternal, newborn, or child health outcomes.

Prevention

Community control of hookworm infection is difficult unless substantial improvements in socioeconomic conditions, sanitation, education, and footwear availability can be achieved. Successful programs have included economic, sanitary, and mass-treatment components. Current WHO recommendations for hookworm infection include periodic mass therapy to lower the overall worm burden until conditions permit a multicomponent physical and educational program. Community leaders should be trained about WHO recommendations.

Cost studies comparing various management strategies favor community-wide, single-dose albendazole chemotherapy at intervals of 12-18 months. Some programs have been more intensive, with dosing frequency up to quarterly in school children, and recommended thrice yearly by the WHO for highly endemic areas.[13]

With regard to sanitation, sanitary excreta disposal is the most effective deterrent, but it is not feasible in many developing countries. Wearing footwear cannot entirely prevent infection because larvae can penetrate any skin surface that comes in contact with contaminated soil. In addition, A duodenale larvae can be ingested.

Mass chemotherapy remains a mainstay of hookworm control strategies. It should be kept in mind that mass or targeted chemotherapy programs may not control hookworm infection, because reinfection is common in endemic areas, and dormant extraintestinal larvae of A duodenale may be resistant to currently available anthelmintic agents.

A concern with mass chemotherapy is that continued use of drugs may lead to reduced efficacy; treatment failures have been observed.[67] A 2007 study assessed the health impact of a national control program that targeted schistosomiasis and intestinal nematodes in Uganda, which has provided population-based anthelmintic chemotherapy since 2003.[68] Anthelmintic treatment delivered as part of a national helminth control program decreased infection and morbidity among schoolchildren and improved hemoglobin concentration.

One unintended consequence of community deworming, however, has been reported increases in allergic diseases.[13]

Although school-based deworming programs probably will not adequately control the prevalence of hookworm infection, they can have a substantial effect on children’s nutritional status, cognitive development, and productivity. Children with hookworm anemia have considerably lower scores on cognitive function tests and exhibit delayed acquisition of language and motor skills. When the infection and the associated anemia are treated, their educational performance and productivity improve.[32, 58, 69] At a population level, improvement in health outcomes has been disappointing, as referenced in numerous recent reviews.[19, 70]

As understanding of the immunoepidemiology and the molecular pathogenesis of hookworm infection improves,[71] identification of a safe and effective vaccine remains a high priority,[53] although achieving progress remains scientifically and economically challenging.[72, 73] The development of an efficacious vaccine requires molecular targeting of both larval and adult stages in order to break the reproductive cycle. In this regard, the Ancylostoma -secreted proteins (ASPs) are one group of potentially promising targets.[74, 75, 76]

In a hamster model using N americanus ASP-2 (Na -ASP-2) hookworm vaccine, encouraging results were achieved with respect to lowering worm burdens and inhibiting growth delay. In 2006, a phase I clinical trial of Na -ASP-2 vaccine demonstrated that the vaccine was both safe and well tolerated.[77] In addition, the vaccine evoked sustained cellular immune responses and elevated immunoglobulin titers. Unfortunately, this vaccine has been withdrawn from development because of urticarial reactions in previously infected recipients.[13]

The recent characterization of the N americanus genome has potential for advancing knowledge of therapeutic and preventive strategies of control.[78] Other larval and adult stage targets have been identified, and additional preclinical studies are being conducted. With additional investigation and further trials, these vaccines will offer an appealing novel strategy to prevent hookworm infections globally.

It is to be hoped that the combined use of periodic deworming, improved sanitation, and an (at least partially) effective hookworm vaccine will decrease the medical, social, and economic burden of anemia due to hookworm in developing countries. The emergence of benzimidazole resistance is a growing concern, and new drugs are being sought. A promising agent is tribendimidine, which was first synthesized in China in the 1980s.[54]

Integrated control of hookworm infection together with other helminth infections can be provided with a package of medicines costing approximately $0.50 per patient per year.[21] Such dual therapy has been shown effective in various geographic contexts.[79] Major partnerships of organizations are coordinating integrated management through the Global Network for Neglected Tropical Disease Control.[80] Such efforts provide hope for improving the health and economic development of millions worldwide.

Long-Term Monitoring

The recommended procedure is to repeat the stool examination using a concentration technique after 2-3 weeks; positive results indicate the need for retreatment. The entire course of iron therapy must be completed to replenish iron stores, even after hemoglobin values return to normal.

It is important to be alert for possible reinfection, which is common in endemic areas. Dormant extraintestinal larvae of A duodenale may be resistant to currently available anthelmintic agents (which may have poor systemic absorption) and may be responsible for relapse.

As worm burden decreases in both individuals and population, more sensitive testing methods such as PCR will likely be required to ensure eradication.[81]

Medication Summary

Therapy for parasitic infestations is based on the specific parasite and the particular phase of the disease. The treatment of classic hookworm infection has the following 2 components:

In rare cases (eg, acute severe gastrointestinal [GI] hemorrhage), blood transfusion may be needed to correct anemia.

Anthelmintic drugs effective against hookworms include pyrantel pamoate and benzimidazoles (eg, albendazole, mebendazole). Benzimidazoles are the most convenient and effective drugs for treating hookworm disease. Other older agents are also effective but may have lower clearance rates.

Albendazole (Albenza)

Clinical Context:  Albendazole is a benzimidazole carbamate that inhibits tubulin polymerization, resulting in degeneration of cytoplasmic microtubules. It decreases production of adenosine triphosphate (ATP) in the worm, causing energy depletion, immobilization, and finally death. Albendazole is converted in the liver to its primary metabolite, albendazole sulfoxide; less than 1% of this metabolite is excreted in urine. The plasma level rises substantially (as much as 5-fold) when the drug is ingested after a high-fat meal.

Albendazole is approved by the US Food and Drug Administration (FDA) for treatment of hookworm infection but is considered investigational. A single 400-mg dose is the treatment of choice; it has a high eradication rate and is easy to administer. At such a dosage, albendazole is selectively toxic to parasites because binding to parasite β-tubulin occurs at a much lower concentration than binding to mammalian protein. Because the drug acts locally on worms within the GI tract, its action is not dictated by its systemic concentration.

Mebendazole (Vermox)

Clinical Context:  Mebendazole inhibits microtubule polymerization by binding to cytoplasmic β-tubulin. By affecting the intestinal cells of the parasite, it prevents the organism from using nutrients and thus essentially starves it to death.

Mebendazole is recommended for treating eosinophilic enteritis. A 3-day course has a reported cure rate of 95% and egg reduction rate of 99.9%. Single-dose therapy is often advocated but may not be as effective as single-dose albendazole. At recommended dosages, mebendazole is selectively toxic to parasites because binding to parasite β-tubulin occurs at a much lower concentration than binding to mammalian protein. Because the drug acts locally on worms within the GI tract, its action is not dictated by its systemic concentration.

Repeat stool examination with a concentration technique is recommended after 2 weeks; if the examination yields positive results, retreatment is indicated. No fasting or purging is required. The tablet may be chewed, swallowed, or crushed and mixed with food.

Pyrantel pamoate (Pin-X, Pamix, Reeses Pinworm Medicine)

Clinical Context:  Pyrantel pamoate is a depolarizing neuromuscular blocking agent that inhibits cholinesterases, resulting in spastic paralysis of the worm. It is FDA-approved for hookworm infection but is considered investigational for this condition.

Class Summary

Anthelmintics are poorly absorbed, relatively nontoxic broad-spectrum agents that act by inhibiting tubulin polymerization. They have shown high clearance rates.

Because biochemical pathways in these parasites differ from those in human hosts, toxicity is directed toward the parasite, egg, or larvae. The mechanism of action varies within the drug class. Antiparasitic actions may include the following:

- Inhibition of microtubules, causing irreversible block of glucose uptake

- Inhibition of tubulin polymerization

- Depolarizing neuromuscular blockade

- Cholinesterase inhibition

- Increased cell membrane permeability, resulting in intracellular calcium loss

- Vacuolization of the schistosome tegument

- Increased cell membrane permeability to chloride ions via alteration of chloride channels

Author

David R Haburchak, MD, FACP, Professor Emeritus of Medicine, Department of Medicine, Division of Infectious Diseases, Medical College of Georgia at Augusta University

Disclosure: Nothing to disclose.

Coauthor(s)

Christopher M Watson, MD, MPH, Associate Professor, Department of Pediatrics, Medical College of Georgia at Augusta University

Disclosure: Nothing to disclose.

Vinod K Dhawan, MD, FACP, FRCPC, FIDSA, Professor, Department of Clinical Medicine, University of California, Los Angeles, David Geffen School of Medicine; Chief, Division of Infectious Diseases, Rancho Los Amigos National Rehabilitation Center

Disclosure: Nothing to disclose.

Chief Editor

Pranatharthi Haran Chandrasekar, MBBS, MD, Professor, Chief of Infectious Disease, Department of Internal Medicine, Wayne State University School of Medicine

Disclosure: Nothing to disclose.

Acknowledgements

Jeffrey L Arnold, MD, FACEP Chairman, Department of Emergency Medicine, Santa Clara Valley Medical Center

Jeffrey L Arnold, MD, FACEP is a member of the following medical societies: American Academy of Emergency Medicine and American College of Physicians

Disclosure: Nothing to disclose.

Basim Asmar, MD Director, Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Michigan; Professor, Department of Pediatrics, Wayne State University School of Medicine

Basim Asmar, MD is a member of the following medical societies: American Academy of Pediatrics, American Society for Microbiology, Infectious Diseases Society of America, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Anika Baxter Tam, MD Staff Physician, Department of Emergency Medicine, New York University / Bellevue Hospital

Disclosure: Nothing to disclose.

Pranatharthi Haran Chandrasekar, MBBS, MD Professor, Department of Internal Medicine, Director of Infectious Disease Fellowship, Harper Hospital, Wayne State University School of Medicine

Pranatharthi Haran Chandrasekar, MBBS, MD is a member of the following medical societies: American College of Physicians and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Swati Garekar, MBBS Staff Physician, Department of Pediatrics, Children's Hospital of Michigan

Swati Garekar, MBBS is a member of the following medical societies: American Academy of Pediatrics

Disclosure: Nothing to disclose.

Aaron Hexdall, MD Assistant Professor, Director of the International Emergency Medicine Initiative, Department of Emergency Medicine, Tufts University School of Medicine, Baystate Medical Center

Disclosure: Nothing to disclose.

Patrick W Hickey, MD, FAAP Assistant Professor of Pediatrics and Preventive Medicine, Uniformed Services University of the Health Sciences; Consulting Staff, Department of Pediatrics, Division of Pediatric Infectious Disease, Walter Reed Army Medical Center

Patrick W Hickey, MD, FAAP is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Society of Tropical Medicine and Hygiene, and Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Ashir Kumar, MD, MBBS, FAAP Professor Emeritus, Department of Pediatrics and Human Development, Michigan State University College of Human Medicine

Ashir Kumar, MD, MBBS, FAAP is a member of the following medical societies: American Association of Physicians of Indian Origin and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Mark Louden, MD Assistant Professor of Clinical Medicine, Division of Emergency Medicine, Department of Medicine, University of Miami, Leonard M Miller School of Medicine

Mark Louden, MD is a member of the following medical societies: American Academy of Emergency Medicine and American College of Emergency Physicians

Disclosure: Nothing to disclose.

Russell W Steele, MD Head, Division of Pediatric Infectious Diseases, Ochsner Children's Health Center; Clinical Professor, Department of Pediatrics, Tulane University School of Medicine

Russell W Steele, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American Pediatric Society, American Society for Microbiology, Infectious Diseases Society of America, Louisiana State Medical Society, Pediatric Infectious Diseases Society, Society for Pediatric Research, and Southern Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Eric L Weiss, MD, DTM&H Medical Director, Office of Service Continuity and Disaster Planning, Fellowship Director, Stanford University Medical Center Disaster Medicine Fellowship, Chairman, SUMC and LPCH Bioterrorism and Emergency Preparedness Task Force, Clinical Associate Progressor, Department of Surgery (Emergency Medicine), Stanford University Medical Center

Eric L Weiss, MD, DTM&H is a member of the following medical societies: American College of Emergency Physicians, American College of Occupational and Environmental Medicine, American Medical Association, American Society of Tropical Medicine and Hygiene, Physicians for Social Responsibility, Southeastern Surgical Congress, Southern Association for Oncology, Southern Clinical Neurological Society, and Wilderness Medical Society

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References

  1. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 2003 Dec. 19(12):547-51. [View Abstract]
  2. Stoltzfus RJ, Dreyfuss ML, Chwaya HM, Albonico M. Hookworm control as a strategy to prevent iron deficiency. Nutr Rev. 1997 Jun. 55(6):223-32. [View Abstract]
  3. World Health Organization. Parasitic Diseases. Available at http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index2.html. Accessed: April 22, 2012.
  4. Brooker S, Bundy DAP. Soil-transmitted Helminths (Geohelminths). Cook GC, Zumla AI, eds. Manson’s Tropical Diseases. 22nd ed. Philadelphia, PA: WB Saunders; 2009. 1515-48.
  5. Centers for Disease Control and Prevention. Hookworm Infection. Available at http://www.cdc.gov/parasites/hookworm/index.html. Accessed: April 22, 2012.
  6. Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Buss P. Hookworm: "the great infection of mankind". PLoS Med. 2005 Mar. 2(3):e67. [View Abstract]
  7. Quinnell RJ, Pritchard DI, Raiko A, et al. Immune responses in human necatoriasis: association between interleukin-5 responses and resistance to reinfection. J Infect Dis. 2004 Aug 1. 190(3):430-8. [View Abstract]
  8. Brooker S, Bethony J, Hotez PJ. Human hookworm infection in the 21st century. Adv Parasitol. 2004. 58:197-288. [View Abstract]
  9. Bungiro R, Cappello M. Hookworm infection: new developments and prospects for control. Curr Opin Infect Dis. 2004 Oct. 17(5):421-6. [View Abstract]
  10. Finlay CM, Walsh KP, Mills KH. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol Rev. 2014 May. 259(1):206-30. [View Abstract]
  11. Hotez PJ, Diemert D, Bacon KM, et al. The Human Hookworm Vaccine. Vaccine. 2013 Apr 18. 31 Suppl 2:B227-32. [View Abstract]
  12. Mason L, Tribolet L, Simon A, et al. Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2. Int J Biochem Cell Biol. 2014 May. 50:146-55. [View Abstract]
  13. Blair P, Diemert D. Update on prevention and treatment of intestinal helminth infections. Curr Infect Dis Rep. 2015 Mar. 17 (3):465. [View Abstract]
  14. Capello M, Hotez PJ. Chapter 276: Intestinal Nematodes. SS, ed-in-chief; Pickering LK, Prober CG, eds. Long Principles and Practice of Pediatric Infectious Diseases. 3rd ed. Philadelphia, PA: Churchill Livingstone, an imprint of Elsevier Science; 2008. 1298-1300.
  15. Centers for Disease Control and Prevention. Hookworm. CDC DPDx: Laboratory Identification of Parasites of Public Health Concern. Available at http://www.dpd.cdc.gov/DPDx/HTML/Hookworm.htm
  16. AAP. Hookworm infections. Red Book 2009: Report of the Committee on Infectious Diseases. 28th ed. American Academy of Pediatrics; 2009. 364(9450): 375-6.
  17. McKenna ML, McAtee S, Bryan PE, Jeun R, Ward T, Kraus J, et al. Human Intestinal Parasite Burden and Poor Sanitation in Rural Alabama. Am J Trop Med Hyg. 2017 Nov. 97 (5):1623-1628. [View Abstract]
  18. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014 Jan 21. 7:37. [View Abstract]
  19. Jourdan PM, Lamberton PHL, Fenwick A, Addiss DG. Soil-transmitted helminth infections. Lancet. 2017 Sep 4. [View Abstract]
  20. Adu-Gyasi D, Asante KP, Frempong MT, Gyasi DK, Iddrisu LF, Ankrah L, et al. Epidemiology of soil transmitted Helminth infections in the middle-belt of Ghana, Africa. Parasite Epidemiol Control. 2018 Aug. 3 (3):e00071. [View Abstract]
  21. Kabatereine NB, Tukahebwa EM, Kazibwe F, et al. Soil-transmitted helminthiasis in Uganda: epidemiology and cost of control. Trop Med Int Health. 2005 Nov. 10(11):1187-9. [View Abstract]
  22. Amoah ID, Adegoke AA, Stenström TA. Soil-transmitted helminth infections associated with wastewater and sludge reuse: a review of current evidence. Trop Med Int Health. 2018 Jul. 23 (7):692-703. [View Abstract]
  23. Hotez P. Hookworm and poverty. Ann N Y Acad Sci. 2008. 1136:38-44. [View Abstract]
  24. Bhatia V, Das MK, Kumar P, Arora NK. Infantile hookworm disease. Indian Pediatr. 2010 Feb. 47(2):190-2. [View Abstract]
  25. Hotez PJ, Brooker S, Bethony JM, et al. Hookworm infection. N Engl J Med. 2004 Aug 19. 351(8):799-807. [View Abstract]
  26. Albonico M, Stoltzfus RJ, Savioli L, Tielsch JM, Chwaya HM, Ercole E, et al. Epidemiological evidence for a differential effect of hookworm species, Ancylostoma duodenale or Necator americanus, on iron status of children. Int J Epidemiol. 1998 Jun. 27(3):530-7. [View Abstract]
  27. Ziegelbauer K, Speich B, Mäusezahl D, Bos R, Keiser J, Utzinger J. Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Med. 2012 Jan. 9(1):e1001162. [View Abstract]
  28. Gunawardena K, Kumarendran B, Ebenezer R, Gunasingha MS, Pathmeswaran A, de Silva N. Soil-transmitted helminth infections among plantation sector schoolchildren in Sri Lanka: prevalence after ten years of preventive chemotherapy. PLoS Negl Trop Dis. 2011 Sep. 5(9):e1341. [View Abstract]
  29. Feldmeier H, Schuster A. Mini review: Hookworm-related cutaneous larva migrans. Eur J Clin Microbiol Infect Dis. 2012 Jun. 31(6):915-8. [View Abstract]
  30. Stoltzfus RJ, Albonico M, Tielsch JM, Chwaya HM, Savioli L. Linear growth retardation in Zanzibari school children. J Nutr. 1997 Jun. 127(6):1099-105. [View Abstract]
  31. Heukelbach J, Feldmeier H. Epidemiological and clinical characteristics of hookworm-related cutaneous larva migrans. Lancet Infect Dis. 2008 May. 8(5):302-9. [View Abstract]
  32. Stoltzfus RJ, Kvalsvig JD, Chwaya HM, Montresor A, Albonico M, Tielsch JM, et al. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ. 2001 Dec 15. 323(7326):1389-93. [View Abstract]
  33. Stoltzfus RJ, Albonico M, Chwaya HM, Tielsch JM, Schulze KJ, Savioli L. Effects of the Zanzibar school-based deworming program on iron status of children. Am J Clin Nutr. 1998 Jul. 68(1):179-86. [View Abstract]
  34. Blouin B, Casapía M, Joseph L, Kaufman JS, Larson C, Gyorkos TW. The effect of cumulative soil-transmitted helminth infections over time on child development: a 4-year longitudinal cohort study in preschool children using Bayesian methods to adjust for exposure misclassification. Int J Epidemiol. 2018 Jul 12. [View Abstract]
  35. Weatherhead JE, Hotez PJ. Worm Infections in Children. Pediatr Rev. 2015 Aug. 36 (8):341-52; quiz 353-4. [View Abstract]
  36. Hughes RG, Sharp DS, Hughes MC. Environmental influences on helminthiasis and nutritional status among Pacific schoolchildren. Int J Environ Health Res. 2004. 14(3):163-77.
  37. Gasser RB, Cantacessi C, Loukas A. DNA technological progress toward advanced diagnostic tools to support human hookworm control. Biotechnol Adv. 2008 Jan-Feb. 26(1):35-45. [View Abstract]
  38. Verweij JJ, Brienen EA, Ziem J, Yelifari L, Polderman AM, Van Lieshout L. Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am J Trop Med Hyg. 2007 Oct. 77(4):685-90. [View Abstract]
  39. Jelinek T, Maiwald H, Nothdurft HD, Löscher T. Cutaneous larva migrans in travelers: synopsis of histories, symptoms, and treatment of 98 patients. Clin Infect Dis. 1994 Dec. 19(6):1062-6. [View Abstract]
  40. Utzinger J, Rinaldi L, Lohourignon LK, et al. FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Trans R Soc Trop Med Hyg. 2008 Jan. 102(1):84-90. [View Abstract]
  41. de Silva N, Guyatt H, Bundy D. Anthelmintics. A comparative review of their clinical pharmacology. Drugs. 1997 May. 53(5):769-88. [View Abstract]
  42. Keiser J, Utzinger J. The drugs we have and the drugs we need against major helminth infections. Adv Parasitol. 2010. 73:197-230. [View Abstract]
  43. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology. 2000. 121 Suppl:S113-32. [View Abstract]
  44. Humphries D, Simms BT, Davey D, et al. Hookworm infection among school age children in Kintampo north municipality, Ghana: nutritional risk factors and response to albendazole treatment. Am J Trop Med Hyg. 2013 Sep. 89(3):540-8. [View Abstract]
  45. Keiser J, Utzinger J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA. 2008 Apr 23. 299(16):1937-48. [View Abstract]
  46. Steinmann P, Utzinger J, Du ZW, et al. Efficacy of single-dose and triple-dose albendazole and mebendazole against soil-transmitted helminths and Taenia spp.: a randomized controlled trial. PLoS One. 2011. 6(9):e25003. [View Abstract]
  47. Soukhathammavong PA, Sayasone S, Phongluxa K, et al. Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS Negl Trop Dis. 2012 Jan. 6(1):e1417. [View Abstract]
  48. Moser W, Schindler C, Keiser J. Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ. 2017 Sep 25. 358:j4307. [View Abstract]
  49. Bethony J, Brooker S, Albonico M, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006 May 6. 367(9521):1521-32. [View Abstract]
  50. Flohr C, Tuyen LN, Lewis S, et al. Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: A cross-sectional study. J Allergy Clin Immunol. 2006 Dec. 118(6):1305-11. [View Abstract]
  51. Bennett A, Guyatt H. Reducing intestinal nematode infection: efficacy of albendazole and mebendazole. Parasitol Today. 2000 Feb. 16(2):71-4. [View Abstract]
  52. Albonico M, Bickle Q, Ramsan M, et al. Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull World Health Organ. 2003. 81(5):343-52. [View Abstract]
  53. Schneider B, Jariwala AR, Periago MV, Gazzinelli MF, Bose SN, Hotez PJ, et al. A history of hookworm vaccine development. Hum Vaccin. 2011 Nov 1. 7(11):[View Abstract]
  54. Xiao SH, Hui-Ming W, Tanner M, et al. Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Trop. 2005 Apr. 94(1):1-14. [View Abstract]
  55. Tyagi R, Maddirala AR, Elfawal M, Fischer C, Bulman CA, Rosa BA, et al. Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics. ACS Infect Dis. 2018 Jul 13. 4 (7):1130-1145. [View Abstract]
  56. Hu Y, Nguyen TT, Lee ACY, Urban JF Jr, Miller MM, Zhan B, et al. Bacillus thuringiensis Cry5B protein as a new pan-hookworm cure. Int J Parasitol Drugs Drug Resist. 2018 Aug. 8 (2):287-294. [View Abstract]
  57. Stoltzfus RJ, Chway HM, Montresor A, Tielsch JM, Jape JK, Albonico M, et al. Low dose daily iron supplementation improves iron status and appetite but not anemia, whereas quarterly anthelminthic treatment improves growth, appetite and anemia in Zanzibari preschool children. J Nutr. 2004 Feb. 134(2):348-56. [View Abstract]
  58. Le Huong T, Brouwer ID, Nguyen KC, Burema J, Kok FJ. The effect of iron fortification and de-worming on anaemia and iron status of Vietnamese schoolchildren. Br J Nutr. 2007 May. 97(5):955-62. [View Abstract]
  59. Larocque R, Casapia M, Gotuzzo E, et al. A double-blind randomized controlled trial of antenatal mebendazole to reduce low birthweight in a hookworm-endemic area of Peru. Trop Med Int Health. 2006 Oct. 11(10):1485-95. [View Abstract]
  60. Friis H, Mwaniki D, Omondi B, et al. Effects on haemoglobin of multi-micronutrient supplementation and multi-helminth chemotherapy: a randomized, controlled trial in Kenyan school children. Eur J Clin Nutr. 2003 Apr. 57(4):573-9. [View Abstract]
  61. Bhatia V, Das MK, Kumar P, Arora NK. Infantile hookworm disease. Indian Pediatr. 2010 Feb. 47(2):190-2. [View Abstract]
  62. Vercruysse J, Behnke JM, Albonico M, Ame SM, Angebault C, Bethony JM, et al. Assessment of the anthelmintic efficacy of albendazole in school children in seven countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis. 2011 Mar 29. 5(3):e948. [View Abstract]
  63. Soukhathammavong PA, Sayasone S, Phongluxa K, Xayaseng V, Utzinger J, Vounatsou P, et al. Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS Negl Trop Dis. 2012 Jan. 6(1):e1417. [View Abstract]
  64. Lone FW, Qureshi RN, Emanuel F. Maternal anaemia and its impact on perinatal outcome. Trop Med Int Health. 2004 Apr. 9(4):486-90. [View Abstract]
  65. Brooker S, Hotez PJ, Bundy DA. Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis. 2008 Sep 17. 2(9):e291. [View Abstract]
  66. Imhoff-Kunsch B, Briggs V. Antihelminthics in pregnancy and maternal, newborn and child health. Paediatr Perinat Epidemiol. 2012 Jul. 26 Suppl 1:223-38. [View Abstract]
  67. Bungiro R, Cappello M. Twenty-first century progress toward the global control of human hookworm infection. Curr Infect Dis Rep. 2011 Jun. 13(3):210-7. [View Abstract]
  68. Kabatereine NB, Brooker S, Koukounari A, Kazibwe F, Tukahebwa EM, Fleming FM, et al. Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull World Health Organ. 2007 Feb. 85(2):91-9. [View Abstract]
  69. Sakti H, Nokes C, Hertanto WS, Hendratno S, Hall A, Bundy DA, et al. Evidence for an association between hookworm infection and cognitive function in Indonesian school children. Trop Med Int Health. 1999 May. 4(5):322-34. [View Abstract]
  70. Schulz JD, Moser W, Hürlimann E, Keiser J. Preventive Chemotherapy in the Fight against Soil-Transmitted Helminthiasis: Achievements and Limitations. Trends Parasitol. 2018 Jul. 34 (7):590-602. [View Abstract]
  71. McSorley HJ, Loukas A. The immunology of human hookworm infections. Parasite Immunol. 2010 Aug. 32(8):549-59. [View Abstract]
  72. Cho Y, Vermeire JJ, Merkel JS, Leng L, Du X, Bucala R, et al. Drug repositioning and pharmacophore identification in the discovery of hookworm MIF inhibitors. Chem Biol. 2011 Sep 23. 18(9):1089-101. [View Abstract]
  73. Hotez PJ. The global fight to develop antipoverty vaccines in the anti-vaccine era. Hum Vaccin Immunother. 2018 Feb 2. 1-4. [View Abstract]
  74. Diemert DJ, Bethony JM, Hotez PJ. Hookworm vaccines. Clin Infect Dis. 2008 Jan 15. 46(2):282-8. [View Abstract]
  75. Hotez PJ, Zhan B, Bethony JM, Loukas A, Williamson A, Goud GN, et al. Progress in the development of a recombinant vaccine for human hookworm disease: the Human Hookworm Vaccine Initiative. Int J Parasitol. 2003 Sep 30. 33(11):1245-58. [View Abstract]
  76. Loukas A, Bethony J, Brooker S, Hotez P. Hookworm vaccines: past, present, and future. Lancet Infect Dis. 2006 Nov. 6(11):733-41. [View Abstract]
  77. Bethony JM, Simon G, Diemert DJ, Parenti D, Desrosiers A, Schuck S, et al. Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 hookworm vaccine in unexposed adults. Vaccine. 2008 May 2. 26(19):2408-17. [View Abstract]
  78. Tang H, Jin X, Li Y, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014 Jan. 46(1):45-50. [View Abstract]
  79. Reddy M, Gill SS, Kalkar SR, et al. Oral drug therapy for multiple neglected tropical diseases: a systematic review. JAMA. 2007 Oct 24. 298(16):1911-24. [View Abstract]
  80. Hotez PJ, Molyneux DH, Fenwick A, et al. Control of neglected tropical diseases. N Engl J Med. 2007 Sep 6. 357(10):1018-27. [View Abstract]
  81. Easton AV, Oliveira RG, O'Connell EM, Kepha S, Mwandawiro CS, Njenga SM, et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors. 2016 Jan 27. 9 (1):38. [View Abstract]
  82. Albonico M, Savioli L. Hookworm: a neglected resurgent infection. BMJ. 2017 Oct 24. 359:j4813. [View Abstract]
  83. Gulland A. Sixty seconds on . . hookworm. BMJ. 2017 Sep 26. 358:j4423. [View Abstract]

Ground itch associated with penetration of skin by hookworm larvae.

Life cycle of hookworm. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Hookworm egg. Image courtesy of Patrick W Hickey, MD.

Hookworm rhabditiform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Hookworm filariform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Adult hookworm attached to duodenal mucosa.

Adult Necator americanus worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.

Adult Ancylostoma duodenale worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.

Ground itch associated with penetration of skin by hookworm larvae.

Hookworm eggs examined on wet mount. Eggs of Ancylostoma duodenale and Necator americanus cannot be distinguished morphologically. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Hookworm rhabditiform larva (wet preparation). Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Adult hookworm attached to duodenal mucosa.

Ground itch associated with penetration of skin by hookworm larvae.

Life cycle of hookworm. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Hookworm egg. Image courtesy of Patrick W Hickey, MD.

Hookworm rhabditiform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Hookworm filariform larva. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Adult Ancylostoma duodenale worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.

Adult Necator americanus worm. Anterior end with mouth parts visible. Image courtesy of Patrick W Hickey, MD.

Hookworm eggs examined on wet mount. Eggs of Ancylostoma duodenale and Necator americanus cannot be distinguished morphologically. Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).

Hookworm rhabditiform larva (wet preparation). Image courtesy of Division of Parasitic Diseases, Centers for Disease Control and Prevention (CDC).