Colon Cancer

Back

Practice Essentials

Colon cancer is the most common type of gastrointestinal cancer. It is a multifactorial disease process, with etiology encompassing genetic factors, environmental exposures (including diet), and inflammatory conditions of the digestive tract.

Surgery currently is the definitive treatment modality.[1] The image below depicts standard colectomies for adenocarcinoma of the colon.



View Image

Standard colectomies for adenocarcinoma of the colon.

See Cutaneous Clues to Diagnosing Metastatic Cancer, a Critical Images slideshow, to help identify various skin lesions that are cause for concern.

Signs and symptoms

Colon cancer is now often detected during screening procedures. Other common clinical presentations include the following:

Physical findings may include the following:

See Presentation for more detail.

Diagnosis

Laboratory studies that may be helpful include the following:

Imaging studies that may facilitate staging include the following:

Other procedures that may be warranted include the following:

See Workup for more detail.

Management

Surgery is the only curative modality for localized colon cancer (stage I-III). Surgical resection potentially provides the only curative option for patients with limited metastatic disease in liver and/or lung (stage IV disease). Surgical options include the following:

Other therapeutic options for patients who are not surgical candidates include the following:

Regimens used for systemic chemotherapy may include the following:

Regimens used for adjuvant (postoperative) chemotherapy commonly include 5-FU with leucovorin or capecitabine, either alone or in combination with oxaliplatin.[2, 3, 4]

Biologic agents employed to treat colon cancer include the following:

See Treatment and Medication for more detail.

Background

Invasive colorectal cancer is a preventable disease. Early detection through widely applied screening programs is the most important factor in the recent decline of colorectal cancer in developed countries (see Deterrence/Prevention).

Full implementation of screening guidelines[5] could cut mortality rate from colorectal cancer in the United States by an estimated additional 50%; even greater reductions are estimated for countries where screening tests may not be widely available at present. New and more comprehensive screening strategies are also needed.

Fundamental advances in understanding the biology and genetics of colorectal cancer are taking place. This knowledge is slowly making its way into the clinic and being employed to better stratify individual risks of developing colorectal cancer, discover better screening methodologies, allow for better prognostication, and improve the ability to predict benefit from new anticancer therapies.

In the past 10 years, an unprecedented advance in systemic therapy for colorectal cancer has dramatically improved outcome for patients with metastatic disease. Until the mid-1990s, the only approved agent for colorectal cancer was 5-fluorouracil. Since then, new agents in a variety of classes have become available, including the following:

Although surgery remains the definitive treatment modality, these new agents will likely translate into improved cure rates for patients with early-stage disease (stage II and III) and prolonged survival for those with stage IV disease. Further advances are likely to come from the development of new targeted agents and from better integration of systemic therapy with other modalities such as surgery, radiation therapy, and liver-directed therapies.

For more information, see Colorectal Cancer Guidelines.

Pathophysiology

Genetically, colorectal cancer represents a complex disease, and genetic alterations are often associated with progression from premalignant lesion (adenoma) to invasive adenocarcinoma. Sequence of molecular and genetic events leading to transformation from adenomatous polyps to overt malignancy has been characterized by Vogelstein and Fearon.[8]

The early event is a mutation of APC (adenomatous polyposis gene), which was first discovered in individuals with familial adenomatous polyposis (FAP). The protein encoded by APC is important in the activation of oncogene c-myc and cyclin D1, which drives the progression to malignant phenotype. Although FAP is a rare hereditary syndrome accounting for only about 1% of cases of colon cancer, APC mutations are very frequent in sporadic colorectal cancers.

In addition to mutations, epigenetic events such as abnormal DNA methylation can also cause silencing of tumor suppressor genes or activation of oncogenes. These events compromise the genetic balance and ultimately lead to malignant transformation.

Other important genes in colon carcinogenesis include the KRAS oncogene, chromosome 18 loss of heterozygosity (LOH) leading to inactivation of SMAD4 (DPC4), and DCC (deleted in colon cancer) tumor suppression genes. Chromosome arm 17p deletion and mutations affecting the p53 tumor suppressor gene confer resistance to programmed cell death (apoptosis) and are thought to be late events in colon carcinogenesis.

A subset of colorectal cancers is characterized with deficient DNA mismatch repair. This phenotype has been linked to mutations of genes such as MSH2, MLH1, and PMS2. These mutations result in so-called high frequency microsatellite instability (H-MSI), which can be detected with an immunocytochemistry assay. H-MSI is a hallmark of hereditary nonpolyposis colon cancer syndrome (HNPCC, Lynch syndrome), which accounts for about 6% of all colon cancers. H-MSI is also found in about 20% of sporadic colon cancers.

Etiology

Colorectal cancer is a multifactorial disease process. Genetic factors, environmental exposures (including diet), and inflammatory conditions of digestive tract are all involved in the development of colorectal cancer.

Although much about colorectal cancer genetics remains unknown, current research indicates that genetic factors have the greatest correlation to colorectal cancer. Hereditary mutation of the APC gene is the cause of familial adenomatous polyposis (FAP), in which affected individuals carry an almost 100% risk of developing colon cancer by age 40 years.

Hereditary nonpolyposis colon cancer syndrome (HNPCC, Lynch syndrome) poses about a 40% lifetime risk for developing colorectal cancer; individuals with this syndrome are also at increased risk for urothelial cancer, endometrial cancer, and other less common cancers. Lynch syndrome is characterized by deficient mismatch repair (dMMR) due to inherited mutation in one of the mismatch repair genes, such as hMLH1, hMSH2, hMSH6, hPMS1, hPMS2, and possibly other undiscovered genes.

HNPCC is a cause of about 6% of all colon cancers. Although the use of aspirin may reduce the risk of colorectal neoplasia in some populations, a study by Burn et al found no effect on the incidence of colorectal cancer in carriers of Lynch syndrome with use of aspirin, resistant starch, or both.[9]

Dietary factors are the subject of intense and ongoing investigations.[10] Epidemiologic studies have linked increased risk of colorectal cancer with a diet high in red meat and animal fat, low-fiber diets, and low overall intake of fruits and vegetables. A study by Aune et al found that a high intake of fiber was associated with a reduced risk of colorectal cancer. In particular, cereal fiber and whole grains were found to be effective.[11] A study by Pala et al found that high yogurt intake was also associated with a decreased risk for colorectal cancer.[12]

A cohort study by Tabung et al that followed 121,050 adults for 26 years found that in both men and women, intake of proinflammatory diets (replete in red, processed, and organ meat, for example) was associated with a significantly higher risk of developing colorectal cancer. Risk was especially high in overweight and obese men and, paradoxically, in lean women. Risk was also increased in men and women who do not drink alcohol.[13, 14]

Factors associated with lower risk include folate intake, calcium intake, and estrogen replacement therapy. However, most of these studies were retrospective epidemiologic studies and have yet to be validated in prospective, placebo-controlled, interventional trials.

Obesity and lifestyle choices such as cigarette smoking, alcohol consumption, and sedentary habits have also been associated with increased risk for colorectal cancer. A meta-analysis of prospective cohort studies found a modest but significant elevation of colorectal cancer risk in current smokers; risk was higher for men and for rectal cancers than colon cancers, and persisting in former smokers.[15]

In a large prospective study, Cho and colleagues reported that high alcohol consumption was associated with elevated risk for colorectal cancer, in individuals with a family history of the disease. The association was significant only for the highest alcohol intake category of 30 g or more daily; no significant linear trend was evident. In comparison with nondrinkers with no family history, individuals who consumed 30 g/d or more and who had a family history of colorectal cancer had a relative risk for colon cancer of 2.80.[16]

Current screening guidelines recommend that clinicians be aware of increased colorectal cancer risk in patients who smoke or are obese, but do not highlight the increased risk in patients with diabetes. A meta-analysis of case-control and cohort studies identified diabetes as an independent risk factor for colon and rectal cancer. Subgroup analyses confirmed the consistency of the findings across study type and population. This information may have an impact on screening guidelines and on building risk models of colorectal cancer.[17]

Association between body mass index (BMI) and risk of colorectal adenomas and cancer has been reported, but few studies have had adequate sample size for conducting stratified analyses. Jacobs et al pooled data from 8,213 participants in seven prospective studies and found that BMI was significantly related to most histologic characteristics of metachronous adenomas in men but not in women. The researchers concluded that body size may affect colorectal carcinogenesis at comparatively early stages, particularly in men.[18]

A nationwide cohort study from France of incident colorectal cancer in obese patients, which compared outcomes in 74,131 patients who underwent bariatric surgery with 971, 217 patients who did not have surgery, found that in the bariatric surgery cohort, risk of colorectal cancer was the same as that in the general population. In the obese patients who did not undergo bariatric surgery, the risk was 34% above that of the general population.[19]

Activation of the WNT signaling pathway, which most often results from APC loss, plays a critical role in the development of colorectal cancer, and CTNNB1 (β-catenin) is a major mediator of the WNT pathway. WNT-CTNNB1 signaling also appears to be involved in obesity, glucose metabolism, and metabolic diseases such as obesity and type II diabetes. Consequently, Morikawa et al hypothesized that the association of obesity and physical activity with colorectal cancer risk might differ by tumor subtypes according to CTNNB1 status.[20]

Using a molecular pathological epidemiology database, these researchers determined that risk of CTNNB1-negative cancer was significantly higher with greater BMI and lower with increased physical activity level. These researchers found no association between either BMI or physical activity level and CTNNB1-positive cancer risk.[20]

Excessive consumption of beverages sweetened with high-fructose corn syrup (HFCS) is associated with increased risk of colorectal cancer. In a study of adenomatous polyposis coli (APC) mutant mice, which are predisposed to develop intestinal tumors, daily administration of 20 g of weight-adjusted HFCS (the equivalent of 1 soda a day) resulted in a substantial increase in in polyps that rapidly developed into advanced, high-grade dysplastic lesions. Carbon labeling showed uptake in fructose within the intestinal tumors themselves. Within the tumors, fructose was converted to fructose-1-phosphate, leading to activation of glycolysis and increased synthesis of fatty acids that support tumor growth.[21]

Inflammatory bowel diseases such as ulcerative colitis and Crohn disease also increase the risk of developing colorectal adenocarcinoma. The risk for developing colorectal malignancy increases with the duration of inflammatory bowel disease and the greater extent of colon involvement.

A matched case-control study of incident colorectal cancer cases in the United Kingdom from 1989 to 2012 found that use of oral antibiotics was associated with increased risk of colon cancer, particularly in the proximal colon. The association involved antibiotic exposure occurring more than 10 years before colon cancer diagnosis. Risk was dose dependent but was observed after even a single course of antibiotics. In addition, risk was greatest with anti-anaerobic antibiotics. The authors note that such antibiotics markedly disrupt the gut microbiome, which consists predominantly of anaerobes, and this disruption may facilitate the acquisition or development of a carcinogenic colon microbiota.[22]

 

Epidemiology

The incidence and mortality from colon cancer have been on a slow decline over the past several decades in the United States, with the incidence falling on average 2.4% each year and death rates falling on average 2.2% each year over 2007-2016.[23]  However, colorectal cancers remain the third most common cancer and third most common cause of cancer-related mortality in US men and women.[24]  In addition, rates of colon cancer in younger persons have been increasing.[25]

The American Cancer Society estimates that 104,610 new cases of colon cancer will be diagnosed in the United States in 2020. Estimates for mortality from colon and rectal cancer (the two are combined because of classification difficulties) are for 53,200 deaths in 2020.[24]

A case-control study using national Veterans Affairs–Medicare data concluded that colonoscopy was associated with significant reductions in colorectal cancer mortality in veterans. Mortality benefit was greater for left-sided cancer than right-sided cancer.[26]

Case patients (n= 4964) were veterans aged 52 years or older who were diagnosed with colorectal cancer in 2002 to 2008 and died of the disease by the end of 2010. Case patients were matched to four control patients (n= 9,856) without prior colorectal cancer. Risk of mortality from left-sided cancer was reduced in those who had undergone colonoscopy (odds ratio [OR], 0.28 [CI, 0.24 to 0.32]), as was risk for mortality from right-sided cancer (OR, 0.54 [CI, 0.47 to 0.63]).[26]

Worldwide, an estimated1,849,518 new cases of colorectal cancer occurred in 2018 (10.2% of all cancers). Geographically, the incidence varies as much as 10-fold. The highest estimated rates are in Australia/New Zealand (per 100,000 population, 41.7 in men and 32.1 in women), and the lowest in South-Central Asia (per 100,000 population, 4.5 in men and 3.8 in women).[27]

Colorectal cancer causes approximately 694,000 deaths annually, accounting for 8.5% of cancer mortality overall. More deaths (52%) occur in the less-developed regions of the world, reflecting a poorer survival in these regions. Geographically, mortality rates worldwide vary six-fold in men and four-fold in women, with the highest estimated mortality rates in both sexes in Central and Eastern Europe (20.3 per 100,000 for men, 11.7 per 100,000 for women), and the lowest in Western Africa (6.1 and 3.8, respectively).[27]

An epidemiologic study from the European Union (EU) concluded that in 2018, colorectal cancer would account for the second highest number of cancer deaths, at 98,000 deaths in men and 79,400 in women. However, while the total number of colorectal deaths in the EU has risen since 2012 because of the aging population, since 2012 the age-standardized death rate has fallen by 6.7% (to 15.8 per 100,000 in men and 7.5% (to 9.2 per 100,000) in women.[28]

Racial, sexual, and age-related disparities in incidence

Since 1989, colorectal cancer incidence rates have been higher for blacks than for whites in both men and women. Currently, incidence rates of colorectal cancer are 24% higher in black men and 19% higher in black women compared with white men and women, respectively.[29]

Colorectal mortality rates are 47% higher in black men and 34% higher in black women compared with whites. However, from 2007 to 2016, colorectal cancer death rates declined faster in blacks than in whites, narrowing the racial disparity in both men and women.[29]

Asians/Pacific Islanders have the lowest incidence and mortality from colorectal cancer. Hispanics have the second lowest.[23]

The incidence of colorectal cancer is relatively equal in men and women. The American Cancer Society estimates that colon cancer will be diagnosed in 52,340 men and 52,270 women in the United States in 2020.[30]  

Age is a well-known risk factor for colorectal cancer, as it is for many other solid tumors. The timeline for progression from early premalignant lesion to malignant cancer ranges from 10-20 years. Median age at diagnosis is 68 years.[23]

However, in contrast to the decline in colon cancer incidence rates in persons age 55 and older, which began in the mid-1980s, rates of colon cancer in younger persons have been increasing. In adults age 20 to 39 years, colon cancer incidence rates have increased by 1.0% to 2.4% annually since the mid-1980s; in those age 40 to 54 years, the incidence has increased by 0.5% to 1.3% annually since the mid-1990s. Currently, adults born circa 1990 have double the risk of colon cancer compared with those born circa 1950.Increased obesity is a likely factor.[25]  

From 2011 through 2016, the incidence of colorectal cancer continued to decline in those aged 65 years and older, by 3.3% annually. Rates increased by 1% annually in those aged 50 to 64 years, and rose approximately 2% annually in those younger than 50 years. The American Cancer Society estimates that 17,930 of the 147,950 individuals expected to be diagnosed with colon and rectal cancer in 2020, and 3640 of the 53,200 expected to die from the disease, will be younger than 50 years of age. [31]  

Tumor site tends to vary by patient age. From 2012 to 2016, the proximal colon was the site of colon cancer in 23% of those under 50 years of age, 31% of those 50-64 years, and 49% of those 65 and older. Incidence trends varied by race/ethnicity: in those 50-64 years old, rates increased in whites by 1.3% per year but decreased in blacks by 1.6% per year, and were stable in Hispanics. In those younger than 50, rates rose by 2% annually in whites and by 0.5% annually in blacks.[31]

A review of Surveillance, Epidemiology and End Results (SEER) data found that US cases of colorectal cancer in persons aged 40-49 years have increased significantly since 1995, with the greatest average annual percentage increase for distant cancers, at 2.9%, while localized and regional disease each increased < 1.5% per year. In addition, the proportion of distant colorectal cancers in this age group increased significantly from 1990-1994 to 2011–2015, from 22% to 27%, while the proportion of localized cases did not change, and the proportion of regional cases decreased. These authors point out that these results indicate a true increase in risk, because if the increase had reflected earlier detection due to wider use of colonoscopy, earlier stage at diagnosis would be expected.[32]

 

 

Prognosis

The approximate 5-year survival rate for colorectal cancer patients in the United States (all stages included) is 64.4%.[23] Survival is inversely related to stage: approximate 5-year relative survival rates are as follows:

A study by Chua et al found that approximately one in every three patients who undergo resection for colorectal liver metastases become actual 5-year survivors.[33] Of those, approximately half survive 10 years and are cured of colorectal liver metastases. A multivariate analysis of 1001 patients who underwent potentially curative resection of liver metastases identified five factors as independent predictors of worse outcome[34] :

Aggarwal et al found that circulating tumor cells measured at baseline after the initiation of new therapy in patients with metastatic colorectal cancer independently predicted survival; in patients with a baseline carcinoembryonic antigen (CEA) value of 25 ng/mL or higher, those with low baseline levels of circulating tumor cells (< 3) had longer survival. Both the number of circulating tumor cells and the CEA level measured at 6-12 weeks independently predicted survival.[35]

Research suggests a role for intra-tumoral immune response as a predictor of clinical outcome in patients with colorectal cancer, in addition to more traditional pathological and molecular markers. Katz et al reported that in patients with colorectal liver metastases, high numbers of T regulatory cells relative to CD4 or CD8 T cells predicted poor outcome[36]

A study by Yothers et al found that black patients with resected stage II and stage III colon cancer had worse overall and recurrence-free survival compared with white patients who underwent the same therapy. Five-year overall survival rate was 68.2% for blacks and 72.8% for whites; the three-year recurrence-free survival was 68.4% in blacks and 72.1% in whites.[37]

A study by Campbell et al found that prediagnosis body mass index (BMI) is an important predictor of survival among patients with nonmetastatic colorectal cancer, whereas postdiagnosis BMI is not.[38] A separate study from Campbell et al found that spending 6 or more hours per day sitting was associated with higher all-cause mortality compared with sitting less than 3 hours per day. The study concluded that increased recreational physical activity in patients with colorectal carcinoma reduces mortality.[39]

Morikawa et al reported that in patients with colorectal cancer that tested negative for cadherin-associated protein β 1 (CTNNB1 or β-catenin), high physical activity (≥18 metabolic equivalent task [MET] hours/week) after diagnosis was associated with significantly better cancer-specific survival. No association between physical activity and survival was seen in CTNNB1–positive cases.[40]

A review of eight trials by Rothwell et al found that allocation to aspirin reduced death caused by cancer. Benefit was apparent after 5 years of follow-up. The 20-year risk of cancer death was also lower in the aspirin group for all solid cancers. A latent period of 5 years was observed before risk of death was decreased for esophageal, pancreatic, brain, and lung cancers. A more delayed latent period was observed for stomach, colorectal, and prostate cancer. The overall effect on 20-year risk of cancer death was greatest for adenocarcinomas.[41]

A study by Burn et al found that 600 mg of aspirin per day for a mean of 25 months reduced cancer incidence after 55.7 months among known carriers of hereditary colorectal cancer. However, further studies are needed to determine the optimum dose and duration of treatment.[42]

Patients with preexisting mental disorders have an overall higher mortality rate than their counterparts. This higher mortality rate can be attributed to a lack of surgery, chemotherapy, and radiation therapy, especially in patients with psychotic disorders and dementia. Improved public health initiatives are needed to improve colon cancer detection and treatment in older adults with mental disorders.[43]

A study by Phipps et al found that smoking is also associated with increased mortality after colorectal cancer diagnosis, especially in patients whose cancer has high microsatellite instability.[44] A study by Dehal et al found that patients with colorectal cancer and type 2 diabetes mellitus have a higher risk of mortality than those without, most notably a higher risk due to cardiovascular disease.[45]

History

Because of increased emphasis on screening practices, colon cancer is now often detected before it starts to cause symptoms. In more advanced cases, common clinical presentations include iron-deficiency anemia, rectal bleeding, abdominal pain, change in bowel habits, and intestinal obstruction or perforation. Right-sided lesions are more likely to bleed and cause diarrhea, while left-sided tumors are usually detected later and may present as bowel obstruction.

In patients younger than 50 years old—an age group that is experiencing rising rates of colorectal cancer (see Overview/Epidemiology)—a study that used data from England's Clinical Practice Research Datalink found that abdominal pain was the most common presenting symptom of colorectal cancer. Compared with other age groups, these younger patients had the lowest percentage of typical ‘red-flag’ signs and symptoms (ie, rectal bleeding, anemia, change in bowel habits, diarrhea, abdominal mass). Instead, these patients were more likely to have presented to their primary care provider, in the year before diagnosis, with nonspecific symptoms.[46]

 

Physical Examination

Physical examination findings can be very nonspecific (eg, fatigue, weight loss) or normal early in the course of colon cancer. In more advanced cases, any of the following may be present:

Approach Considerations

Because early-stage colon cancer is typically asymptomatic, screening plays a major role in the diagnosis of curable cancerous lesions, as well as the detection of precancerous lesions (adenomatous colon polyps). The decline in colorectal cancer incidence and death rates over recent decades has largely been attributed to widespread adoption of screening.[24]

Screening guidelines endorse the use of several tests and procedures that either detect adenomatous polyps and cancer or that primarily detect cancer. However, guidelines from the American College of Gastroenterology recommend colonoscopy every 10 years, beginning at age 50 years, as the preferred screening strategy.[47]

A suspicion of colorectal cancer diagnosis warrants rectal examination and colonoscopy with a biopsy of any suspicious lesions. The National Comprehensive Cancer Network recommends that all patients younger than 70 years of age who are diagnosed with colorectal cancer be tested for hereditary nonpolyposis colon cancer syndrome (HNPCC, Lynch syndrome); patients 70 and older should be tested only if they meet the revised Bethesda guidelines for HNPCC.[48, 49]

After tissue diagnosis is confirmed, laboratory studies are done with a goal of assessing patients’ organ function (liver, kidneys) in anticipation of diagnostic and therapeutic procedures and also to estimate tumor burden. Adequate imaging of the chest and abdomen should be obtained for staging purposes, ideally preoperatively.

Further workup is driven by the following:

Blood Studies

Laboratory studies are done with a goal of assessing patients’ organ function (liver, kidneys) in anticipation of diagnostic and therapeutic procedures and also to estimate tumor burden. Studies may include the following:

A baseline CEA level should be obtained preoperatively as it carries prognostic value and when highly elevated may indicate more advanced, disseminated disease. Increased levels of serum CEA have been associated with an adverse prognosis in patients with resectable colorectal cancer; however, this biochemical marker has not as of yet been included in colorectal cancer staging guidelines.[50]

Imaging Studies

Adequate imaging of the chest and abdomen should be obtained for staging purposes, ideally preoperatively. Abdominal/pelvic computed tomography (CT), contrast ultrasound of the abdomen/liver, and abdominal/pelvic magnetic resonance imaging (MRI) scans are appropriate for imaging the abdomen and liver, for the purpose of staging. Imaging studies may also include a chest radiograph or chest CT scan, and an abdominal barium study to better delineate the primary lesion preoperatively.

Positron emission tomography (PET) scanning is emerging as a very useful modality for staging and assessment of colorectal cancers. The newest addition, a fusion PET-CT scan, allows for detection of metastatic deposits and has the added tissue-based resolution of CT. Of note, some histologies, especially a mucinous signet-ring cell variant of colorectal cancer, may not be well visualized on a PET scan.

For more information, see Imaging in Adenocarcinoma of the Colon.

Screening

The goal of colorectal cancer screening is to decrease mortality through diagnosis and treatment of precancerous lesions (adenomatous colon polyps) and early curable cancerous lesions. The evidence for the importance of early detection and removal of colorectal polyps in preventing development of invasive cancer is mostly indirect but has been corroborated by data from many trials.

In the United States, a joint guideline was developed by the American Cancer Society, US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology.[24] The guideline recommends that screening for colorectal cancer and adenomatous polyps start at age 50 years in asymptomatic men and women. In addition, the guideline lists appropriate screening procedures and their indications and frequency, based on projected individual risks of developing colorectal cancer.

Screening options consist of tests that detect adenomatous polyps and cancer, and tests that primarily detect cancer. Any one of these tests can be used for screening.

Tests that detect adenomatous polyps and cancer, and their recommended frequency, include the following:

Tests that primarily detect cancer, and their recommended frequency, include the following:

A Cochrane Database review of 14 trials found that flexible sigmoidoscopy is more effective at detecting advanced adenoma and carcinoma than stool-based tests.[51]  However, a Norwegian study determined that while the use of flexible sigmoidoscopy for screening reduced the incidence and mortality of colorectal cancer in men, it had little or no effect in women.[52]

A study by Wilschut et al found that FIT should be used at higher hemoglobin cutoff levels when colonoscopy capacity is limited. The findings suggest that FIT is more effective in terms of outcome and cost than fecal occult blood testing at all colonoscopy capacity levels.[53]

A retrospective study in which FIT kits were mailed to patients concluded that this is an effective way to screen for colorectal cancer. In the study, the researchers mailed FIT kits to approximately 670,000 adults aged 50–70 years; 48.2% of those completed the test within 1 year. The patients who responded were mailed kits annually for the next 3 years, with response rates ranging from 75%–86%.[54]

In the study, which comprised 98,678 persons, 20 552 were randomly assigned to screening and 78,126 to no screening. On median follow-up of 14.8 years, the absolute risks for colorectal cancer in women were 1.86% in the screening group and 2.05% in the control group (hazard ratio [HR] 0.92). In men, the corresponding risks were 1.72% and 2.50%, respectively (HR 0.66). The absolute risks for death from colorectal cancer in women were 0.60% in the screening group and 0.59% in the control group (HR 1.01); in men, the corresponding risks were 0.49% and 0.81%, respectively (HR 0.63).[52]

Positive results on FIT screening were highest in the first round and declined in subsequent years. Overall, FIT screening identified 80% of patients with colorectal cancer diagnosed within 1 year of testing.[54]

In a cohort study of 70,124 patients with positive FIT results, Corley et al found that patients who underwent colonoscopy within 9 months showed no increased risk for colorectal cancer or advanced-stage disease, compared with those who had colonoscopy done within a month after the positive FIT result. However, patients who did not have procedures done until 10 months or later were at significantly higher risk for cancer findings.[55]

Patients on clopidogrel therapy are at significantly higher risk for delayed but not immediate bleeding when they have polyps removed during colonoscopy.[56, 57] Because interruption of clopidogrel therapy in patients with coronary artery disease increases the risk of serious ischemic events, elective colonoscopy and polypectomy should be delayed in these patients until cessation of clopidogrel therapy is considered safe.[56, 57]

In 2014, the FDA approved Cologuard, a colorectal cancer screening tool that detects DNA mutations and hemoglobin in stool samples. A positive result should be followed up with colonoscopy. Cologuard is recommended for screening of adults of either sex, aged 50 years or older, who are at average risk for colorectal cancer. It is not a replacement for diagnostic or surveillance colonoscopy for individuals at high risk, and its approval did not change practice guidelines that recommend screening using colonoscopy, sigmoidoscopy, or fecal occult blood testing.[58]

In 2016, the FDA approved the first blood-based colorectal cancer screening test, Epi proColon. This is a qualitative in vitro assay for detecting methylated Septin9 DNA, which has been associated with the occurrence of colorectal cancer, in plasma obtained from whole-blood specimens. It is indicated for use in average-risk patients who have chosen not to undergo other screening methods, such as colonoscopy or stool-based tests.[59]

Screening for colorectal cancer should start at an earlier age and be more frequent and more stringent for individuals who carry an increased or high risk of developing colorectal cancer, such as persons with any of the following:

Those genetically diagnosed or suspected of having hereditary familial syndromes such as hereditary nonpolyposis colon cancer syndrome (HNPCC) or familial adenomatous polyposis (FAP) should be treated as having high risk of developing colon and rectal cancer. These patients should adhere to a more intense surveillance protocol.[60] For more information, see Familial Adenomatous Polyposis and Hereditary Colorectal Cancer.

A French study found that even in patients with no personal or family history of colorectal polyps or cancer, starting colonoscopy screening at age 45 instead of age 50 can be valuable. In a prospective study that included 6027 consecutive screening colonoscopies, Karsenti et al found that for the 515 patients age 45 to 49 years, the average polyp detection rate was 26% and the average neoplasia detection rate was nearly 4%. By comparison, for the 4438 patients older than 50 years, the average polyp detection rate exceeded 35% and the average neoplasia detection rate exceeded 5%. Both rates were markedly lower in the 1076 study patients age 44 years and younger.[61]

Noting the rise in colorectal cancer rates in the under-50 population, Dr. Karsenti recommends showing these data to patients 45 years and older, as part of the discussion on colorectal cancer prevention.[61]

A study by Lasser et al found that in an ethnically diverse patient population, completion of colorectal cancer screening was increased by the use of a patient navigation strategy consisting of an introductory letter from the primary care provider with educational material, followed by telephone calls from a language-concordant navigator. Navigator intervention proved particularly beneficial for patients whose primary language was other than English and for black patients.[62]

Capsule colonoscopy

For capsule colonoscopy, the patient swallows a pill camera that acquires images as peristalsis propels it through the gastrointestinal tract. The images are transmitted to a recording device and then converted to a video format for viewing on a computer.

In 2014, the US Food and Drug Administration approved the PillCam COLON 2 Capsule Endoscopy System (Given Imaging Limited, Yoqneam, Israel) for use in patients in whom conventional colonoscopy with adequate preparation was conducted, but a complete evaluation of the colon was not technically possible. In multicenter trials, capsule colonoscopy has demonstrated a sensitivity of 84-89% for detection of polyps larger than 6 mm.[63]

American College of Gastroenterology guidelines

American College of Gastroenterology (ACG) guidelines for colorectal cancer screening are as follows[47] :

Alternative cancer detection tests recommended in the ACG guidelines are as follows:

Alternative cancer detection tests in the ACG guidelines are as follows:

For screening purposes, patients with one first-degree relative diagnosed with colorectal cancer or advanced adenoma at age 60 years or older are considered at average risk. For patients with a single first-degree relative diagnosed with colorectal cancer or advanced adenoma before age 60 years, or those with two first-degree relatives with colorectal cancer or advanced adenomas, the guideline recommends colonoscopy every 5 years, beginning at age 40 years or at 10 years younger than the age at diagnosis of the youngest affected relative.[47]

Postpolypectomy surveillance

A 2020 update of US Multi-Society Task Force on Colorectal Cancer guidelines provides recommendations on postpolypectomy surveillance. Screening colonoscopy findings and recommended scheduling of surveillance colonoscopy are as follows[64] :

Molecular Testing

Treatment of metastatic colorectal cancer is increasingly guided by molecular testing of the tumor. The American Society for Clinical Pathology, the College of American Pathologists (CAP), the Association for Molecular Pathology, and the American Society of Clinical Oncology (ASCO) have issued evidence-based guidelines on colorectal cancer molecular testing.[65]  Among the recommendations are the following:

Staging

The TNM staging system has become the international standard for staging of colorectal cancer. It uses the following three descriptors:

See Tables 1 and 2, below[66] :

Table 1. TNM Classification for Colon Cancer



View Table

See Table

Table 2. Anatomic stage/prognostic groups



View Table

See Table

For more information, see Colon Cancer Staging.

Prognostic factors associated with staging

Patient prognosis is a function of the clinical and histopathologic stage of colon cancer at diagnosis. In addition to the well-established significance of standard pathologic features such as depth of bowel wall penetration (T), number of locoregional lymph nodes involved (N), and presence of extra-colonic metastases (M), several other factors have been proved to be of importance. These include number of harvested and processed lymph nodes, histologic grade, and evidence of lymphovascular and perineural invasion.

Features that have been shown to be associated with worse prognosis include the following:

Molecular prognostic factors that have been investigated but not incorporated into standard clinical practice include the following:

KRAS mutations, which are present in about 40% of colon adenocarcinomas, affect sensitivity to treatment with biologic agents directed against the epithelial growth factor receptor (EGFR).[68] The US Food and Drug Administration (FDA) has approved a qualitative real-time polymerase chain reaction (PCR) assay, the therascreen KRAS RGQ PCR Kit, for the detection of specific KRAS mutations in the KRAS oncogene.

Deficient mismatch repair (dMMR), which is associated with high-frequency microsatellite instability (H-MSI), has been shown to be associated with better clinical outcome for patients with resectable colon cancer, based on a retrospective analysis of several large randomized trials of adjuvant therapy for colon cancer.[69, 70] In addition, patients with dMMR (H-MSI) did not appear to benefit from fluorouracil-based adjuvant therapy.[71]

Testing for dMMR with H-MSI may become useful for prognosis and treatment planning in patients with resectable colon cancer. Some research also emphasizes the role of immune regulation in the development and in the natural course and prognosis of patients with colorectal cancers.[72]

For patients aged 60-69 years with selected stage T3 or T4 colorectal cancer, prognostic factor and 5-year relapse-free survival (based on the Mayo Clinic calculator and numbers of lymph nodes analyzed[73] ) are as follows:

A review of Surveillance, Epidemiology, and End Results (SEER) population-based data on colon cancer by the American Joint Committee on Cancer (AJCC) Hindgut Taskforce found the following:

The Taskforce proposed the following revisions of the TN categorization for colon cancer[74] :

Histologic subtype and metastatic patterns

In a retrospective Dutch study of autopsy results from 1675 patients with metastatic colorectal cancer and data from 88 patients with synchronous metastases from the Total Mesorectal Excision (TME) trial, Hugen et al noted that the histologic subtype and the localization of the primary tumor in colorectal cancer has a strong influence on its metastatic pattern.[75, 76] Their findings include the following:

Approach Considerations

Surgery is the only curative modality for localized colon cancer (stage I-III). Surgical resection potentially provides the only curative option for patients with limited metastatic disease in liver and/or lung (stage IV disease), but the proper use of elective colon resections in nonobstructed patients with stage IV disease is a source of continuing debate.

Adjuvant chemotherapy is standard for patients with stage III disease. Its use in stage II disease is controversial, with ongoing studies seeking to confirm which markers might identify patients who would benefit. At present, the role of radiation therapy is limited to palliative therapy for selected metastatic sites such as bone or brain metastases.

Chemotherapy rather than surgery has been the standard management for patients with metastatic colorectal cancer. Biologic agents have assumed a major role in the treatment of metastatic cases, with selection increasingly guided by genetic analysis of the tumor. The proper use of elective colon/rectal resections in nonobstructed patients with stage IV disease is a source of continuing debate.

For more information, see Colon Cancer Treatment Protocols.

Surgical Care

Surgery is the only curative modality for localized colon cancer (stage I-III) and potentially provides the only curative option for patients with limited metastatic disease in liver and/or lung (stage IV disease). The general principles for all operations include removal of the primary tumor with adequate margins including areas of lymphatic drainage. Standard colectomies for adenocarcinoma of the colon are depicted in the image below.



View Image

Standard colectomies for adenocarcinoma of the colon.

For lesions in the cecum and right colon, a right hemicolectomy is indicated. During a right hemicolectomy, the ileocolic, right colic, and right branch of the middle colic vessels are divided and removed. Care must be taken to identify the right ureter, the ovarian or testicular vessels, and the duodenum. If the omentum is attached to the tumor, it should be removed en bloc with the specimen.

For lesions in the proximal or middle transverse colon, an extended right hemicolectomy can be performed. In this procedure, the ileocolic, right colic, and middle colic vessels are divided and the specimen is removed with its mesentery.

For lesions in the splenic flexure and left colon, a left hemicolectomy is indicated. The left branch of the middle colic vessels, the inferior mesenteric vein, and the left colic vessels along with their mesenteries are included with the specimen.

For sigmoid colon lesions, a sigmoid colectomy is appropriate. The inferior mesenteric artery is divided at its origin, and dissection proceeds toward the pelvis until adequate margins are obtained. Care must be taken during dissection to identify the left ureter and the left ovarian or testicular vessels.

Total abdominal colectomy with ileorectal anastomosis may be required for patients with any of the following:

Total abdominal colectomy may also be indicated for some patients with acute malignant colon obstructions in whom the status of the proximal bowel is unknown.

Laparoscopic surgery

The advent of laparoscopy has revolutionized the surgical approach to colonic resections for cancers. Large prospective randomized trials have found no significant differences between open and laparoscopic colectomy with regard to intraoperative or postoperative complications, perioperative mortality rates, readmission or reoperation rates, or rate of surgical wound recurrence. Oncologic outcomes (cause-specific survival, disease recurrence, number of lymph nodes harvested) are likewise comparable.[77, 78, 79, 80, 81, 82]

For example, the Clinical Outcomes of Surgical Therapy Study Group trial found no significant differences between laparoscopic-assisted colectomy (LAC) or open colectomy in terms of 5-year disease-free survival rate (69% versus 68% in the LAC and open colectomy groups, respectively) or overall survival (76% versus 75%).[78] In a study by Lacy et al with median followup of 95 months, LAC was more effective than open colectomy, although the tendency toward higher cancer-related and overall survival did not reach statistical significance.[81]

Metastatic colorectal cancer

Chemotherapy rather than surgery has been the standard management for patients with metastatic colorectal cancer. The proper use of elective colon/rectal resections in nonobstructed patients with stage IV disease is a source of continuing debate.

Medical oncologists properly note the major drawbacks to palliative resection, such as loss of performance status and risks of surgical complications that potentially lead to delay in chemotherapy. However, surgeons understand that elective operations have lower morbidity than emergent operations on patients who are receiving chemotherapy.

There is a trend toward nonsurgical management of patients with asymptomatic, surgically incurable colorectal cancer, with studies showing that fewer than 10% of these patients subsequently require surgery for obstruction or perforation.[83, 84] A review by Venderbosch et al found that resection of the primary tumor appears to improve survival in patients with stage IV colorectal cancer, but these researchers concluded that prospective studies are warranted, given the potential bias of those results.[85]

Curative-intent resections of liver metastases have significantly improved long-term survival, with acceptable postoperative morbidity, including in older patients.[86] A study by Brouquet et al found that resection of colorectal liver metastases after a second-line chemotherapy regimen was safe and provided a modest hope for definitive cure, making this approach viable in patients with advanced colorectal liver metastases.[87]

Hepatic arterial infusion (HAI) of chemotherapeutic agents such as floxuridine (FUDR) is a consideration following partial hepatectomy. A study by House et al found that adjuvant HAI-FUDR combined with modern systemic chemotherapy resulted in improved survival compared with adjuvant chemotherapy alone.[88]

During the past decade, colonic stents have introduced an effective method of palliation for obstruction in patients with unresectable liver metastasis. However, a study by van Hooft et al found that colonic stenting has no decisive clinical advantages compared with emergency surgery. Although it may be used as an alternative treatment in undefined sets of patients, concerns about tumor spread caused by perforations remains.[89]

Ablation

Although resection is the only potentially curative treatment for patients with colon metastases, other therapeutic options for those who are not surgical candidates include thermal ablation techniques. Cryotherapy uses probes to freeze tumors and surrounding hepatic parenchyma. It requires laparotomy and can potentially results in significant morbidity, including liver cracking, thrombocytopenia, and disseminated intravascular coagulation (DIC).

Radiofrequency ablation (RFA) uses probes that heat liver tumors and the surrounding margin of tissue to create coagulation necrosis. RFA can be performed percutaneously, laparoscopically, or through an open approach. Although RFA has minimal morbidity, local recurrence is a significant problem and correlates with tumor size.

Adjuvant Therapy

Benefits of adjuvant therapy

The standard chemotherapy for patients with stage III and some patients with stage II colon cancer for the last two decades consisted of 5-fluorouracil in combination with adjuncts such as levamisole and leucovorin.[2, 3, 4] This approach has been tested in several large randomized trials and has been shown to reduce individual 5-year risk of cancer recurrence and death by about 30%.

Analysis of a data set assembled by the Adjuvant Colon Cancer Endpoints group showed that adjuvant chemotherapy provides a significant disease-free survival benefit in stage II and III colon cancer because it reduces the recurrence rate. The benefit was particularly evident within the first 2 years of adjuvant therapy but some benefit extended to years 3-4.[90]

Elderly patients

In an observational study of 1291 patients with stage III colon cancer, 56% of whom received adjuvant chemotherapy, van Erning et al concluded that adjuvant chemotherapy should be considered in elderly patients with stage III disease. Adjuvant chemotherapy reduced the risk of distant recurrence after surgery by about half in both elderly patients and younger ones. With adjuvant chemotherapy, hazard ratios for distant recurrence were 0.50 in patients < 75 years of age and 0.57 in those 75 years and older.[91]

Alternative regimens

Two large randomized trials (MOSAIC and NASBP-C06) investigated the addition of oxaliplatin to fluorouracil (FOLFOX4 and FLOX, respectively) and demonstrated a significant improvement in 3-year disease-free survival for patients with stage III colon cancer. The addition of irinotecan to fluorouracil in the same patient population provided no benefit based on the results from two large randomized trials (CALGB 89803 and PETACC 3).

The randomized XACT study demonstrated the noninferiority of capecitabine (Xeloda) compared with fluorouracil/leucovorin as adjuvant therapy for patients with stage III colon cancer. A large trial comparing capecitabine plus oxaliplatin (XELOX) versus FOLFOX has completed accrual, but survival data have not yet been reported.

Therapy duration

In the International Duration Evaluation of Adjuvant Chemotherapy (IDEA) trial (n=12,834), which compared 3 versus 6 months of FOLFOX or CapeOx, 3-year disease-free survival (DFS) in the FOLFOX 3-month arm was lower than that in the 6-month arm by 0.9% (hazard ratio [HR], 1.07; 95% confidence interval [CI], 1.00 - 1.15). To meet the prespecified noninferiority threshold, the upper limit of the 95% CI had to be 1.12 or less, so noninferiority was not established. However, shorter therapy was associated with significantly less neurotoxicity. Rates of neurotoxicity were 17% versus 48% with 3 versus 6 months, respectively, of FOLFOX; comparable figures with CapeOx were15% and 45%, respectively; P < 0.0001).[92]

For patients with stage III colon cancer, National Comprehensive Cancer Network (NCCN) guidelines recommend basing adjuvant treatment duration on risk status, as follows[93] :

Adjuvant therapy in stage II colon cancer

The role of adjuvant chemotherapy for stage II colon cancer is controversial. Surgery alone is usually curative for stage II colon cancer, but approximately 20-30% of these patients develop tumor recurrence and ultimately die of metastatic disease. The American Society of Clinical Oncology does not recommend the routine use of adjuvant chemotherapy for patients with stage II colon cancer, and instead recommends encouraging these patients to participate in clinical trials.[94]

A large European trial (QUASAR) demonstrated small but significant benefit (3.6%) in terms of absolute 5-year survival rate for those patients who received fluorouracil/leucovorin versus those in the control group.[69] In contrast, a study by O’Connor et al found that in Medicare patients with stage II colon cancer, with or without poor prognostic features, overall survival was not substantially improved by adjuvant chemotherapy.[95]

Ongoing adjuvant trials are investigating additional risk stratification of stage II colon cancer based on clinicopathological and molecular markers. For example, the ECOG 5202 trial is comparing two forms of adjuvant therapy (oxaliplatin, leucovorin, and fluorouracil with or without bevacizumab) in high-risk patients, with low-risk patients undergoing observation only.

In this trial, high-risk patients are defined as those with microsatellite stability (MSS) or low-frequency microsatellite instability (MSI-L) and loss of heterozygosity at 18q. Low-risk patients are those with MSS or MSI-L and retention of 18q, or high-frequency MSI with or without loss of heterozygosity at 18q.

Detection of MSI has become important for treatment for metastatic colorectal cancers with MSI, as these cases respond favorably to biologic therapy with immune checkpoint inhibitors (eg, pembrolizumab, nivolumab). These tumors tend to have high expression of checkpoint proteins, including programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), which interfere with the body’s antitumor T-cell response. By disabling these proteins, checkpoint inhibitors enable T cells to kill tumor cells.[96]

A comparison of 3 vs 6 months of FOLFOX (fluorouracil, leucovorin, and oxaliplatin) or CAPOX (capecitabine plus oxaliplatin) adjunct chemotherapy in 1254 patients with high-risk stage II resected colorectal cancer found that neurotoxicity was approximately 5 times lower in the 3-month arm than the 6-month arm. Noninferiority of 3 months of therapy was not shown for 5-year relapse-free survival. However, a possible regimen effect was observed, suggesting that either 3 months of CAPOX or 6 months of FOLFOX therapy can be used when an oxaliplatin doublet is indicated for treatment of patients with stage II colorectal cancer.[97]

Therapy for Metastatic Disease

Combination regimens provide improved efficacy and prolonged progression-free survival (PFS) in patients with metastatic colon cancer. The advent of new classes of active drugs and biologics for colorectal cancer has improved the expected survival for patients with metastatic disease.

In a phase III multicenter trial in patients with advanced colorectal carcinoma refractory to fluorouracil, overall survival did not significantly differ between patients treated with fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) (n=246) compared with irinotecan (n=245); however, FOLFOX 4 improved response rate (RR) and time to progression (TTP) compared with irinotecan (P=0.0009 for each RR and TTP). FOLFOX4 was associated with more neutropenia and paresthesias.[98]

Although many patients with colorectal cancer are elderly, exclusion of these patients from randomized controlled trials has impeded the creation of evidence-based guidelines for this population. A study by Seymour et al demonstrated that elderly and frail patients with untreated metastatic colorectal cancer can participate in a randomized controlled trial. Study patients, who were considered unfit for full-dose chemotherapy, underwent a comprehensive health assessment and were started on chemotherapy at 80% of standard doses.[99]

In September 2015, the FDA approved tipiracil/trifluridine (Lonsurf) for metastatic colorectal cancer. Efficacy and safety were evaluated in the phase III RECOURSE trial, an international, randomized, double-blind study involving 800 patients with previously treated metastatic colorectal cancer. Patients had received chemotherapy with a fluoropyrimidine, oxaliplatin, irinotecan, bevacizumab, and—for patients with KRAS wild-type tumors—cetuximab or panitumumab. The primary efficacy end point of the study was median overall survival, which was 7.1 months with tipiracil/trifluridine vs 5.3 months with placebo (P < 0.001). The secondary end point was progression-free survival, which was 2 months with tipiracil/trifluridine vs 1.7 months with placebo.[100]

Biologic Agents

Biologic agents used in the treatment of colon cancer include monoclonal antibodies against vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), as well as a kinase inhibitor and a decoy receptor for VEGF. Such agents include the following:

Bevacizumab

Bevacizumab is a humanized monoclonal antibody to VEGF. It was the first anti-angiogenesis drug to be approved in clinical practice and its first indication was for metastatic colorectal cancer. Approval was based on a pivotal trial that demonstrated improved progression-free survival (PFS) and overall survival (OS) when bevacizumab was added to chemotherapy with irinotecan, 5-fluorouracil, and leucovorin (IFL).

Bevacizumab, in combination with fluorouracil-based chemotherapy, is indicated for first- and second-line treatment of metastatic colorectal carcinoma. Bevacizumab is also approved for second-line treatment in patients who have progressed on a first-line bevacizumab-containing regimen.

Approval for continuation treatment was based on a study that showed maintenance of VEGF inhibition with bevacizumab plus standard second-line chemotherapy. The risk of death was reduced by 19% for those who received bevacizumab in combination with standard chemotherapy in both the first- and second-line compared with those who received chemotherapy alone (hazard ratio [HR]=0.81, P=0.0057). PFS improved by 32% (HR=0.68, P < 0.0001).[101]

A pooled analysis of cohorts of older patients (aged 65 years or older) from two randomized clinical trials concluded that adding bevacizumab to fluorouracil-based chemotherapy for first-line treatment of metastatic colorectal cancer improved OS and PFS in older patients as it does in younger patients, without increased risks of treatment in the older age group. Median OS improved from 14.3 months to 19.3 months with the addition of bevacizumab, while median PFS improved from 6.2 months to 9.2 months.[102]

Results from the randomized CAIRO3 trial appear to show that, compared with observation, maintenance therapy with capecitabine (Xeloda) and bevacizumab significantly delayed disease progression in 558 previously untreated patients with stable (or better) metastatic colorectal cancer after six cycles of induction therapy with capecitabine, oxaliplatin, and bevacizumab (CAPOX-B).[103, 104] Patients in both groups were treated with CAPOX-B at first progression until second progression.

At a median follow-up of 48 months, CAPOX-B was restarted in 48% of those in the maintenance treatment group and 61% of patients in the observation group.[103, 104] Median second progression after randomization occurred at 11.7 months in the maintenance group and 8.5 months in the observation group, and median first progression after randomization occurred at 8.5 months in the maintenance group compared with 4.1 months in the observation group.[104]

In a study by Tebbutt et al, bevacizumab was found to be associated with a modestly increased risk of arterial thromboembolism (ATE). However, safety was not significantly worse in older patients or those with a history of ATE or other vascular risk factors.[105]

Despite its role in the therapy of metastatic colon cancer, bevacizumab did not significantly prolong disease-free survival in patients with stage II and III colon cancer, when added to adjuvant chemotherapy (mFOLFOX6) in a randomized trial (NASBP C-08).[106]

In September 2017, the FDA approved Mvasi (bevacizumab-awwb) as a biosimilar to Avastin (bevacizumab), to be used in combination with fluoropyrimidine-irinotecan– or fluoropyrimidine-oxaliplatin–based chemotherapy for the second-line treatment of patients with metastatic colorectal cancer who have progressed on a first-line bevacizumab-product–containing regimen. The approval was based on evidence from animal study data, human pharmacokinetic and pharmacodynamics data, and clinical immunogenicity data that supported Mvasi as a biosimilar to Avastin.[107]

Cetuximab

Cetuximab is a chimeric monoclonal antibody against EGFR that is approved for treatment of KRAS mutation–negative (wild-type), EGFR-expressing, metastatic colorectal cancer. Cetuximab may be used as monotherapy or in combination with irinotecan (Camptosar) in patients with metastatic colorectal cancer refractory to fluoropyrimidine and oxaliplatin therapy.[108] Additionally, cetuximab is approved as combination therapy with FOLFIRI (irinotecan, 5-fluorouracil, leucovorin).[109, 110]

KRAS mutations, which are present in about 40% of colon adenocarcinomas, affect sensitivity to anti-EGFR treatment.[68] The addition of anti-EGFR antibody treatment to standard chemotherapy regimens for patients with advanced colorectal cancer improves progression-free survival for those with wild-type KRAS status, but not those with mutant KRAS.[111]

The CRYSTAL trial, a large international trial exploring the benefit of adding cetuximab to first-line chemotherapy with FOLFIRI, documented that only patients with wild-type KRAS derived clinical benefit from cetuximab. In patients with mutant KRAS, adding cetuximab to chemotherapy provided no clinical benefit and resulted only in unnecessary toxicity.

Based on these results, testing for KRAS mutation was added to the cetuximab indication by the European Medicines Agency (EMA). The US Food and Drug Administration (FDA) approved the use of cetuximab in combination with FOLFIRI for first-line treatment of patients with wild-type KRAS metastatic colorectal cancer, as determined by FDA-approved tests, in July 2012.

Panitumumab

Panitumumab is a fully human monoclonal antibody against EGFR. This agent was originally approved as monotherapy for patients with EGFR-expressing metastatic colorectal cancer in whom combination chemotherapy with regimens containing fluoropyrimidine, oxaliplatin, and irinotecan had failed or was not tolerated.

In May 2014, the FDA approved panitumumab for first-line treatment of patients with wild-type KRAS (exon 2) metastatic colorectal carcinoma in combination with fluorouracil, leucovorin, and oxaliplatin (FOLFOX4).[112] Approval was based on results from the PRIME trial.[113]

The PRIME trial, a phase III study, showed that patients with wild-type KRAS tumors achieved statistically significant improvement in PFS with panitumumab and FOLFOX4 versus FOLFOX4 alone (9.6 versus 8.0 months, P=0.02) and a nonsignificant improvement in OS versus FOLFOX4 alone (23.9 versus 19.7 months, P =0.07). In contrast, patients with mutant KRAS had significantly reduced PFS with panitumumab-FOLFOX4.[113]

Thus, panitumumab becomes an option, or an alternative to cetuximab, for patients who have tumors with wild-type KRAS.[114, 115] However, Hecht et al reported that adding panitumumab to bevacizumab and chemotherapy (oxaliplatin- and irinotecan-based) as first-line treatment of metastatic colorectal cancer resulted in increased toxicity and decreased PFS.[116]

In a randomized study of first-line treatment of metastatic colorectal cancer, Bokemeyer et al concluded that the overall response rate for cetuximab plus FOLFOX-4 was higher than with FOLFOX-4 alone. However, a statistically significant increase was seen only in patients with KRAS wild-type tumors, for whom the addition of cetuximab increased chance of response and lowered the risk of disease progression.[117]

Douillard and colleagues reported that in addition to KRAS mutations in exon 2, additional RAS mutations (KRAS exon 3 or 4; NRAS exon 2, 3, or 4; or BRAF exon 15) are associated with inferior PFS and OS with panitumumab-FOLFOX4 treatment.[118] Other mutations that involve some of the kinases downstream from KRAS (such as BRAF and PI3K) are being investigated and may result in even more selective methods to identify patients that may benefit from EGFR inhibition.

In June 2017, the FDA extended approval for panitumumab for use in wild-type RAS (both KRAS and NRAS) metastatic colorectal cancer. Approval was based on a retrospective analysis from the PRIME trial and prospective, pre-defined analyses from the phase 3 '0007 study. The '0007 study evaluated the efficacy of panitumumab plus best supportive care (BSC) versus BSC alone in patients with chemorefractory, wild-type KRAS metastatic colorectal cancer.[119] Key secondary endpoint data showed significant improvement in overall survival (OS) of 10 months in BSC with panitumumab compared to 6.9 months with BSC alone.

Ramucirumab

The FDA approved ramucirumab for use in combination with FOLFIRI for the treatment of patients with metastatic colorectal cancer that has progressed on a first-line bevacizumab-, oxaliplatin- and fluoropyrimidine-containing regimen. The approval was based on the phase III RAISE trial, in which the ramucirumab-FOLFIRI combination improved overall survival and progression-free survival (13.3 months, 5.7 months) compared with placebo-FOLFIRI (11.7 months, 4.5 months) (P = 0.023 and < 0.001, respectively).[120]

Nivolumab

In the CheckMate 142 phase 2 study, nivolumab, with or without ipilimumab, appeared tolerable and demonstrated clinical activity for patients with microsatellite instability-high metastatic colorectal cancer. The study enrolled dMMR and MSI-H colorectal cancer patients who had progressed on, or were intolerant to, at least one prior line of therapy. Patients were dosed with nivolumab every two weeks.[121]

The primary endpoint was investigator-assessed objective response rate (ORR), defined as the percentage of patients whose tumor shrank or disappeared. Secondary endpoint was independent review committee-assessed ORR. Other measures, including safety, progression-free survival (PFS), overall survival (PS), and effectiveness in specific subsets were also assessed.

Data revealed patients receiving nivolumab had the investigator-assessed ORR and disease control rate were 31% and 69%. One year after entering the trial, 48.4% of patients were still alive and disease-free. One-year overall survival was 73.8%. Treatment was well-tolerated with no safety signals.

Nivolumab monotherapy demonstrated encouraging activity in patients with microsatellite instability-high status. The study brought an accelerated approval to nivolumab for the treatment of patients 12 years or older with dMMR and MSI-H) metastatic colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan in August 2017. The accelerated approval of nivolumab for this indication is contingent upon the outcomes of confirmatory trials.[122]

Pembrolizumab

Pembrolizumab, which is a monoclonal antibody to programmed cell death–1 protein (PD-1) gained accelerated approval from the FDA in May 2017 for unresectable or metastatic colon cancer that has tested positive for microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR), and has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. It is also approved for any solid tumor that has tested positive for MSI-H or dMMR in patients who have had prior treatment and have no satisfactory alternative treatment options.[123]

The approval was based on data from 149 patients with MSI-H or dMMR cancers enrolled across 5 single-arm clinical trials (KEYNOTE). Ninety patients had colorectal cancer (CRC) and the remaining 59 patients had 1 of 14 other tumor types. The objective response rate (ORR) with pembrolizumab was 39.6%, including 11 (7.4%) complete responses (CRs) and 48 (32.2%) partial responses (PRs). Among patients who responded to pembrolizumab, 78% had responses that lasted for at least 6 months.

The accelerated approval for pembrolizumab in this setting is contingent on the results of a confirmatory trial. The approval was preceded by a breakthrough therapy designation the FDA granted to pembrolizumab in November 2015 as a treatment for patients with MSI-H metastatic CRC.[123]

Regorafenib

Regorafenib, a kinase inhibitor, was approved in September 2012. It is indicated for patients with metastatic colorectal cancer who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy; anti-VEGF therapy (eg, bevacizumab, ziv-aflibercept); and, if KRAS wild type, anti-EGFR therapy (eg, cetuximab, panitumumab).[124]

Approval was based on a multicenter trial (n=760) that randomized patients at a 2:1 ratio to receive regorafenib in addition to best supportive care or placebo plus best supportive care. Statistically significant benefit in OS and PFS was observed for regorafenib over placebo in patients with metastatic colon cancer in whom all approved standard therapies had failed.[125]

Ziv-aflibercept

Ziv-aflibercept is a fusion protein that acts as a decoy receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF). This agent was approved for use in combination with FOLFIRI for the treatment of patients with metastatic colorectal cancer that is resistant to or has progressed after an oxaliplatin-containing fluoropyrimidine-based regimen.[126]

Approval was based on the Aflibercept Versus Placebo in Metastatic Colorectal Cancer (mCRC) After Failure of an Oxaliplatin-Based Regimen (VELOUR) trial that included 1226 patients. Results showed that when ziv-aflibercept was used in combination with FOLFIRI, overall survival and progression-free survival improved in patients with mCRC previously treated with an oxaliplatin containing regimen.[127]

A phase III trial by Van Cutsem and colleagues in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen found that the addition of ziv-aflibercept fluorouracil, leucovorin, and irinotecan (FOLFIRI) improves survival. Median survival time was 13.5 months with ziv-aflibercept plus FOLFIRI versus 12.06 months with FOLFIRI alone (P = O.0032); PFS was 6.90 versus 4.67 months, respectively (P < 0.0001).[128]

Larotrectinib

Larotrectinib is a highly selective inhibitor of tropomyosin receptor kinases A, B, and C (TRKA, TRKB, TRKC), which are encoded by NTRK genes. In November 2018, the FDA granted tissue-agnostic approval for larotrectinib for adult and pediatric patients who meet the following criteria[129] :

Targeted Therapy

For patients with dMMR/MSI-H tumors who are not eligible for cytotoxic combinations, National Comprehensive Cancer Network (NCCN) guidelines recommend the following as first-line immunotherapy options[93] :

The NCCN recommends nivolumab with or without ipilimumab or pembrolizumab for the second- and third-line treatment of patients with dMMR/MSI-H colorectal cancer.

For advanced or metastatic colon cancer that is BRAF V600E mutation positive, NCCN guidelines include the following as second-line therapy options[93] :

In the open-label, phase 3 BEACON trial, triplet therapy with the BRAF inhibitor encorafenib, the MEK inhibitor binimetinib, and the EGFR inhibitor monoclonal antibody cetuximab provided an overall survival benefit for patients with metastatic colorectal cancer who had the BRAF V600E mutation. The BEACON trial enrolled 665 patients with BRAF V600E–mutated metastatic colorectal cancer who had disease progression after one or two previous regimens. Median overall survival was 9.0 months in the triplet-therapy group, compared with 5.4 months for patients in the control group, who received doublet therapy with encorafenib plus cetuximab, cetuximab plus irinotecan, or cetuximab plus FOLFIRI.[130]

HER2-positive disease

HER2 is overexpressed in approximately 3% of colorectal cancers overall and in 5-14% of RAS/BRAF–wild type colorectal tumors. Experimental therapeutic approaches for tumors that have HER2 overexpression have included trastuzumab plus lapatinib and trastuzumab plus pertuzumab.[92]

In a phase 2 proof-of-concept study, 27 heavily pretreated patients with HER2-positive metastatic colon cancer showed good response to a therapy regimen that is commonly used to treat HER2-positive breast cancer and does not include a chemotherapy backbone. The 27 patients in the study were identified through screening of 914 patients with KRAS exon 2 (codons 12 & 13) wild-type metastatic colorectal cancer.[131, 132]

Most of the patients had extensive metastatic disease and distal colon tumors. Almost 75% had received at least four prior treatment regimens and had spent a median total time of 20 months on previous treatments.

Patients were treated with a combination of trastuzumab and lapatinib. At 1 year, 12 of the 27 patients (45%) were still alive. At a median follow-up of 94 weeks, one patient (4%) had achieved a complete response, seven (26%) had achieved a partial response, and disease had stabilized in 12 patients (44%).[131, 132]

Radiation Therapy

Although radiation therapy remains a standard modality for patients with rectal cancer, it has only a limited role in colon cancer. Radiation therapy is not used in the adjuvant setting, and in metastatic settings it is used only for palliative therapy in selected metastatic sites such as bone or brain metastases.

Newer, more selective ways of administering radiation therapy, such as stereotactic radiotherapy (CyberKnife) and tomotherapy, are currently being investigated. In the future, these techniques may extend the indications for radiotherapy in the management of colon cancer.

A prospective, multicenter, randomized phase III study by Hendlisz et al showed that the addition of radioembolization with yttrium-90 significantly improved time to liver progression and median time to tumor progression in patients with unresectable, chemotherapy-refractory, liver-limited metastatic colorectal cancer. The study compared treatment with fluorouracil alone with fluorouracil plus yttrium-90 resin, which was injected into the hepatic artery.[133]  The US Food and Drug Administration (FDA) has approved yttrium-90 resin microspheres (SIR-Spheres) for the treatment of unresectable metastatic liver tumors from primary colorectal cancer in combination with adjuvant intra-hepatic artery chemotherapy with floxuridine.

Diet

In a prospective cohort study that included 1575 healthcare professionals with stage I to III colorectal cancer, Song et al found that rates of colorectal cancer (CRC)–specific mortality and overall mortality were lower in patients who had higher intake of dietary fiber, especially from cereals. Survival rates were higher in patients who increased their fiber intake after diagnosis from levels before diagnosis, and in patients reporting higher intake of whole grains.[134, 135]

After multivariable adjustment, each 5 g increment in daily fiber intake was associated with a 22% decrease in CRC-specific mortality and a 14% decrease in all-cause mortality. In patients who increased their fiber intake after diagnosis, each 5 g increase in daily fiber intake was associated with 18% lower CRC-specific mortality. The relationship between fiber intake after diagnosis and CRC-specific mortality  reached a maximum at approximately 24 g/d, beyond which no further mortality reduction was found.[134, 135]

Evaluation of the source of fiber showed that cereal fiber was associated with lower CRC-specific mortality (33% per 5-g/d increment) and all-cause mortality (22%); vegetable fiber was associated with 17% lower all-cause mortality but not with significantly lower CRC-specific; no association was found for fruit fiber. Whole grain intake was associated with lower CRC-specific mortality (28% decrease in risk per 20-g/day increment), although this beneficial association fell to 23% after adjusting for fiber intake.[134, 135]

Consultations

Colorectal cancer, especially early stage disease, can be cured surgically. Following diagnosis and staging, obtaining surgical consultation for the possibility of resection may be appropriate. After surgery, the stage of the tumor may be advanced depending on the operative findings (eg, lymph node involvement, palpable liver masses, peritoneal spread).

In the care of patients with colorectal cancer and isolated liver metastases, consider surgical consultation for possible resection. In some cases, resection of previously unresectable liver metastases may become feasible after cytoreduction with neoadjuvant chemotherapy. Therefore, ongoing involvement of the surgical oncologist is very important in patient care, even if the tumor is not considered resectable at the time of diagnosis. In patients with advanced disease, palliative surgery may be helpful in cases of bleeding or obstruction.

Gastroenterology (GI) consultation is critical for screening of high-risk individuals (ie, patients with a family history of colorectal cancer or polyposis syndromes) and those individuals who are found to be inappropriately iron deficient or to have occult blood on screening fecal examination. A colonoscopy or sigmoidoscopy is necessary to visualize the colon endoscopically, to obtain biopsies, or to resect polyps.

GI consultation may also be necessary in the management of advanced disease. The advent of colorectal stents allows a nonsurgical management of impending obstruction in patients who present with unresectable, metastatic disease.

GI consultation is necessary in the follow-up of patients after surgical resection and adjuvant chemotherapy. Patients must be screened for recurrent disease in the colon by colonoscopic examination at 1 year after surgery and then every 3 years.

Long-Term Monitoring

Pooled analysis from several large adjuvant trials showed that 85% of colon cancer recurrences occur within 3 years after resection of primary tumor, with 95% occurring within 5 years. Therefore, patients with resected colon cancer (stage II and III) should undergo regular surveillance for at least 5 years following resection.[136] Recommendations for post-treatment surveillance, from the European Society for Medical Oncology (ESMO),[137] the American Society for Clinical Oncology (ASCO),[136] and the National Comprehensive Cancer Network (NCCN)[93] are compared in Table 2, below.

Table 2. Surveillance recommendations for stage II and III colon cancer



View Table

See Table

Followup should be guided by the patient’s presumed risk of recurrence and functional status. Testing at the more frequent end of the range should be considered for patients at high risk. Patients with severe comorbid conditions that make them ineligible for surgery or systemic therapy should not undergo surveillance testing.[136]

Cancer Care Ontario published guidelines for the follow-up care of survivors of stages II and III colorectal cancer, and these were endorsed by the American Society of Clinical Oncology. The recommendations include the following[138, 136] :

Prevention

Colorectal cancer prevention strategies fall into three categories:

Lifestyle measures

Abundant epidemiologic literature suggests an association of risk for developing colorectal cancer with dietary habits, environmental exposures, and level of physical activity. For example, a prospective cohort study in the general population of two Danish cities concluded that 23% of colorectal cancer cases might have been prevented if all participants had followed recommendations for the following five lifestyle factors[139] :

There is also evidence that diet and physical activity affect the risk for recurrence of colon cancer. A prospective observational study involving patients with stage III colon cancer from the CALGB 89803 adjuvant chemotherapy trial demonstrated adverse effect with regards to risk for recurrence and increased mortality for patients following a "Western" diet (high intake of red meat, refined grains, fat, and sweets) versus a "prudent" diet (high intake of fruits and vegetables, poultry, and fish).[10]

In another observational study from the same cohort of patients, patients were prospectively monitored and physical activity was recorded. The study concluded that physical activity reduces the risk of recurrence and mortality in patients with resected stage III colon cancer.[140]

Calcium and vitamin D supplementation

Although earlier data had strongly indicated that calcium supplementation can help prevent colorectal cancer, and had suggested a preventive effect of vitamin D supplementation, a randomized trial by Baron et al found that daily supplementation with vitamin D3 (1000 IU), calcium (1200 mg), or both after removal of colorectal adenomas did not significantly reduce the risk of recurrent colorectal adenomas over a period of 3 to 5 years.[141]

However, a randomized trial by Barry et al suggested that vitamin D receptor genotype may affect the benefits of vitamin D3 supplementation. In their analysis of 41 single-nucleotide polymorphisms (SNPs) in vitamin D and calcium pathway genes in 1702 patients with colorectal adenomas, vitamin D3 supplementation decreased risk for advanced adenomas (but not adenomas overall) by 64% in study subjects with the AA genotype at the rs7968585 SNP, but increased risk by 41% in those with one or two G alleles. The benefits of calcium supplementation were not significantly linked to genotype.[142]

Circulating levels of 25 hydroxyvitamin D (25[OH]D) that are optimal for preventing colorectal cancer may be significantly higher than levels necessary for bone health, according to an international collaborative meta-analysis that pooled 17 cohorts. Although levels of 50 to < 62.5 nmol/L are considered adequate for bone health by the Institute of Medicine, the study found that levels of 75–< 87.5 were associated with 19% lower risk and levels of 87.5–< 100 nmol/L were associated with 27% lower risk.[143, 144]

For each 25 nmol/L increment in circulating 25(OH)D, colorectal cancer risk was 19% lower in women and 7% lower in men. In addition, the study confirmed that vitamin D deficiency increases colorectal cancer risk: 25(OH)D levels of less than 30 nmol/L were associated with a 31% greater risk compared with adequate levels.[143, 144]

Pharmacologic prevention

Pharmacologic prevention is based on the understanding of colorectal carcinogenesis and the availability of pharmacologic agents that are effective yet minimally toxic. The efficacy of these agents is usually first tested in high-risk populations.

Celecoxib (Celebrex), a selective cyclooxygenase-2 inhibitor, was first tested in patients with familial adenomatous polyposis (FAP). Celecoxib was effective in decreasing the number and size of polyps on serial colonoscopies, which was the primary surrogate endpoint for this trial.[145] The drug was approved for FAP patients, although it remains to be seen whether this intervention translates to reduced cancer incidence and prolonged survival.

Enthusiasm for cyclooxygenase-2 inhibitors as chemopreventive agents has dampened because of a high incidence of cardiovascular toxicity in trial patients, which led to the removal of rofecoxib from the market. Other nonsteroidal anti-inflammatory drugs (NSAIDs), such as sulindac and nonselective cyclooxygenase inhibitors, have been tested in lower-risk populations.

Aspirin use has been shown to be effective in both primary prevention of colorectal cancer (at doses of 300 mg or more daily for about 5 years[146] ) and secondary prevention (at doses ranging from 81 to 325 mg daily[147] ) of colorectal adenomas. The decrease in colon cancer risk with aspirin use may vary among population subgroups. However, body mass index, physical activity, and plasma C-peptide levels were shown to not have a significant impact on aspirin’s effect on colon cancer risk.[148]

Examination of questionnaire data collected from the Nurses’ Health Study and the Health Professionals Follow-up Study showed regular aspirin use was associated with lower risk of BRAF –wild-type colorectal cancer (multivariable hazard ratio [HR], 0.73) but not with BRAF -mutated cancer risk (multivariable HR, 1.03). Status of tumor PTGS2 expression or PIK3CA or KRAS mutation had no effect on this association.[149]

A 2013 study showed that low-dose aspirin taken every other day lowers the risk for colorectal cancer in middle-aged women. Nearly 40,000 women aged 45 and older were randomized to low-dose aspirin (100 mg) or placebo every other day for roughly 10 years; 84% were followed for an additional 7 years after treatment ended. At followup, colorectal cancer risk was lower in the aspirin group, mostly owing to a reduction in proximal colon cancer; this reduction in risk emerged after 10 years.[150]

Some trials focused on combined inhibition of polyamine production and cyclooxygenase inhibition. A report from a large randomized trial of a combination of sulindac and dimethylformamine (DMFO), an inhibitor of ornithine decarboxylase (ODC), described a dramatic effect of this combination in reducing polyp recurrence in patients with prior history of colon polyps. Confirmatory trials are ongoing.[151]

Guidelines Summary

Guidelines contributor: Elwyn C Cabebe, MD Physician Partner, Valley Medical Oncology Consultants; Medical Director of Oncology, Clinical Liason Physician, Cancer Care Committee, Good Samaritan Hospital

Guidelines on colorectal screening have been issued by the following organizations:

While all the guidelines recommend routine screening for colorectal cancer and adenomatous polyps in asymptomatic adults starting at age 50, they differ with regard to frequency of screening and age at which to discontinue screening, as well as preferred screening method. For high-risk patients, the recommendations differ regarding the age at which to begin screening, as well as the frequency and method of screening.

American Cancer Society (ACS), US Multi-Society Task Force on Colorectal Cancer, and American College of Radiology

A joint guideline developed by the American Cancer Society, US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology recommends that screening for colorectal cancer and adenomatous polyps start at age 50 years in asymptomatic men and women.[60]

In addition, individuals with any of the following colorectal cancer risk factors should undergo colonoscopy at an earlier age and more frequently than average risk individuals:

Tests that detect adenomatous polyps and cancer, and their recommended frequency, include the following:

Tests that primarily detect cancer, and their recommended frequency, include the following:

American Cancer Society update

In May 2018 the ACS revised its colorectal screening guidelines, advising that regular screening for people at average risk start at age 45 years.[152]  Additional ACS recommendations include the following:

U.S. Preventive Services Task Force (USPSTF)

The USPSTF recommends that screening for colorectal cancer start at age 50 years and continue until age 75 years (A recommendation). For adults aged 76 to 85 years, the decision to screen should be individualized, taking into account the patient’s overall health and prior screening history (C recommendation).[153]

The USPSTF advises that screening is more likely to benefit older patients who have never been screened than those who have undergone screening, and is more likely to benefit patients who are healthy enough to undergo treatment for colorectal cancer treatment and who do not have other medical conditions limiting their life expectancy.[153]

The USPSTF does not recommend colorectal cancer screening for adults older than 85 years.[153]

The USPSTF notes that colorectal screening is substantially underused. As part of a strategy to increase screening rates, the guidelines provide a range of screening options rather than a ranking of tests.

Stool-based screening tests and intervals are as follows:

Direct visualization screening tests and intervals are as follows:

American College of Physicians (ACP)

In 2015, the American College of Physicians recommended that average-risk adults aged 50 to 75 years should be screened for colorectal cancer by one of the following strategies[154] :

Interval screening with fecal testing or flexible sigmoidoscopy in adults having 10-year screening colonoscopy is not recommended. Average-risk adults younger than 50 years, older than 75 years, or with an estimated life expectancy of less than 10 years should not be screened. 

American College of Gastroenterology (ACG)

The guidelines of the American College of Gastroenterology make a distinction between screening tests for cancer prevention and cancer detection, preferring cancer prevention tests.[47]  The specific guidelines for colorectal cancer screening are as follows:

Alternative cancer detection tests recommended in the ACG guidelines are as follows:

Alternative cancer detection tests in the ACG guidelines are as follows:

For screening purposes, patients with one first-degree relative diagnosed with colorectal cancer or advanced adenoma at age 60 years or older are considered at average risk. For patients with a single first-degree relative diagnosed with colorectal cancer or advanced adenoma before age 60 years, or those with two first-degree relatives with colorectal cancer or advanced adenomas, the guideline recommends colonoscopy every 5 years, beginning at age 40 years or at 10 years younger than the age at diagnosis of the youngest affected relative.

The National Comprehensive Cancer Network (NCCN)

The National Comprehensive Cancer Network (NCCN) has released separate guidelines for average-risk and high-risk individuals.[155, 156]  For average individuals, the recommendations are nearly identical to those of the joint American Cancer Society (ACS), US Multi-Society Task Force on Colorectal Cancer, and American College of Radiology.

The NCCN guidelines provide screening recommendations for patients at increased risk due to any of the following[155] :

The guidelines also specify recommendations for patients with the following high-risk syndromes[156] :

Individuals meeting one or more of the following criteria should receive further evaluation for high-risk syndromes:

Familial Risk

Hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch syndrome, is a common autosomal dominant syndrome characterized by early age at onset, neoplastic lesions, and microsatellite instability (MSI). Guidelines for Lynch syndrome screening have been developed by the National Cancer Institute (Bethesda guidelines) and the National Comprehensive Cancer Network (NCCN).[93]

The American Gastroenterological Association recommends testing all patients with colorectal cancer for Lynch syndrome; the tumor should be tested for MSI or with immunohistochemistry for MLH1, MSH2, MSH6, and PMS2 proteins.[157]

The European Society for Medical Oncology (ESMO) guidelines for familial risk-colorectal cancer [158] , which have been endorsed by the American Society of Clinical Oncology (ASCO) [159]  includes the following recommendations:

The American College of Gastoenterology recommendations are in general agreement with ESMO.[160]  The NCCN guidelines note that although high MSI status or MMR deficiency associated with the BRAF V600E mutation is usually due to epigenetic mechanisms and is not inherited, it does not rule out Lynch syndrome; approximately 1% of cancers with BRAF V600E mutations (and loss of MLH1) are Lynch syndrome. Germline testing  in such patients is recommended if there is a strong family history.[93]

Revised Bethesda guidelines for Lynch syndrome and microsatellite instability

Because cancers with MSI account for approximately 15% of all colorectal cancers, in 1996 the National Cancer Institute developed the Bethesda guidelines for the identification of individuals with HNPCC who should be tested for MSI. These guidelines were most recently revised in 2002.[49]

Postpolypectomy Surveillance

A 2020 update of US Multi-Society Task Force on Colorectal Cancer guidelines provides recommendations on postpolypectomy surveillance. The recommendations assume high-quality baseline colonoscopy, defined as meeting all the following criteria[64] :

Screening colonoscopy findings and recommended scheduling of surveillance colonoscopy are as follows[64] :

In 2020, the British Society of Gastroenterology (BSG), the Association of Coloproctology of Great Britain and Ireland (ACPGBI) and Public Health England (PHE) released joint guidelines for surveillance after polypectomy and colorectal cancer resection.  According to the guidelines, the criteria for high-risk for future colorectal cancer (CRC) following polypectomy comprise either of the following[161] :

Patients who meet the high-risk criteria should undergo a single surveillance colonoscopy at 3 years.  Patients who have undergone CRC resection should have a colonoscopy at 1 year post-surgery and every 3 years thereafter.[161]

Patients who do not meet high-risk criteria postpolypectomy should participate in national bowel screening when invited. For patients who are more than 10 years younger than the national bowel screening lower age limit, colonoscopy may be considered after 5 or 10 years and individualized to age and other risk factors.[161]

Familial Adenomatous Polyposis

The European Society of Medical Oncology offers the following recommendations for suveillance of patients with familial adenomatous polyposis (FAP)[158] :

Classic FAP

Attenuated FAP

The American Society of Colon and Rectal Surgeons recommends that patients with familial adenomatous polyposis (FAP) or with personal or family risk factors for FAP be referred to center registries and genetic counselors with experience in the multidisciplinary management of these individuals.[162]

Additional recommendations include[162] :

 

Surgical Treatment

The American Society of Colon and Rectal Surgeons practice parameters for the management of colon cancer recommend colectomy as the primary treatment for localized resectable colon cancer.[163]

Additional recommendations are as follows:

National Comprehensive Cancer Network (NCCN) guidelines also recommend colectomy, with en bloc removal of regional lymph nodes, for treatment of resectable, nonobstructing colon cancer.[93]  In addition, for clinical T4b disease, neoadjuvant chemotherapy may be considered. The NCCN states that laparoscopic-assisted colectomy may be considered, based upon the following criteria:

NCCN recommendations for lymphadenectomy are as follows[93] :

Adjuvant Therapy

National Comprehensive Cancer Network (NCCN) guidelines list numerous adjuvant therapy regimens for colon cancer. Regimens for metastatic colon cancer include molecular-targeted agents chosen on the basis of testing for KRAS, NRAS, and BRAF mutations.[93]

NCCN preferred regimens for adjuvant therapy for patients with resected, nonmetastatic colon cancer depend on the stage of disease, as follows:

The American Society of Clinical Oncology does not recommend the routine use of adjuvant chemotherapy for patients with stage II colon cancer, and instead recommends encouraging these patients to participate in clinical trials.[94]

For more information on chemotherapy regimens, see Colon Cancer Treatment Protocols.

Follow-up Care in Stage II and III Colorectal Cancer

Guidelines on follow-up care for survivors of stage II and stage III colorectal cancer were issued by the following organizations:

All four guidelines agree that patients with resected colon cancer (stage II and III) should undergo regular surveillance for at least 5 years following resection, and that surveillance should include regular reviews of medical history, physical examination, and carcinoembryonic antigen assays, as well as colonoscopy and abdominal and chest computed tomography (CT[136, 137, 93, 164] The frequency of the surveillance testing differs as shown in the table below.

Table 1.



View Table

See Table

In 2016, the US Multi-Society Task Force on Colorectal Cancer issued guidelines on colonoscopy after colorectal cancer resection, which included the following recommendations[165] :

Molecular Testing in Metastatic Disease

 In 2015, the American Society for Clinical Pathology (ASCP), the College of American Pathologists (CAP), the Association for Molecular Pathology (AMP), and the American Society of Clinical Oncology (ASCO) issued a provisional clinical opinion regarding gene mutation testing to predict response to anti–epidermal growth factor receptor (EGFR)  monoclonal antibody (MoAb) therapyin patients with metastatic colorectal carcinoma (mCRC). Among the recommendations are the following[166] :

The 2016 European Society of Medical Oncology (ESMO) guidelines for the management of patients with mCRC concur with the ASCP/CAP/AMP/ASCO RAS mutational testing recommendations above. Additional recommendations include the following[167] :

 

Targeted Therapy

For BRAF V600E–mutated colorectal cancer unresponsive to previous oxaliplatin-based therapy without irinotecan, National Comprehensive Cancer Network (NCCN) guidelines include any of the following options for subsequent therapy[93] :

​As a subsequent treatment option in patients with metastatic colorectal cancer who have neurotrophic receptor tyrosine kinase (NTRK) gene fusions.

Medication Summary

5-Fluorouracil remains the backbone of chemotherapy regimens for colon cancer, both in the adjuvant and metastatic setting. In addition to 5-fluorouracil, oral fluoropyrimidines such as capecitabine (Xeloda) and tegafur are increasingly used as monotherapy or in combination with oxaliplatin (Eloxatin) and irinotecan (Camptosar). Some of the standard combination regimens employ prolonged continuous infusion of fluorouracil (FOLFIRI, FOLFOX)[168] or capecitabine (CAPOX, XELOX, XELIRI).[169, 170]

Consider pembrolizumab for unresectable or metastatic colon cancer that has tested positive for microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR), and has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.[123]  Nivolumab, or nivolumab plus ipilimumab are also indicated for MSI-H or dMMR metastatic colorectal cancer which progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.[171]

See also Colon Cancer Treatment Protocols

 

5-Fluorouracil

Clinical Context:  Fluoropyrimidine analog. Cell cycle-specific with activity in the S-phase as single agent and has for many years been combined with biochemical modulator leucovorin. It inhibits DNA replication and transcription. Cytotoxicity is cell-cycle nonspecific. Classic antimetabolite anticancer drug with chemical structure similar to endogenous intermediates or building blocks of DNA or RNA synthesis. 5-FU inhibits tumor cell growth through at least 3 different mechanisms that ultimately disrupt DNA synthesis or cellular viability. These effects depend on intracellular conversion of 5-FU into 5-FdUMP, 5-FUTP, and 5-FdUTP. 5-FdUMP inhibits thymidylate synthase (key enzyme in DNA synthesis), which leads to accumulation of dUMP, which then gets misincorporated into the DNA in the form of 5-FdUTP resulting in inhibition of DNA synthesis and function with cytotoxic DNA strand breaks. 5-FUTP is incorporated into RNA and interferes with RNA processing.

Capecitabine (Xeloda)

Clinical Context:  Fluoropyrimidine carbamate prodrug from of 5-fluorouracil (5-FU). Capecitabine itself is inactive. Undergoes hydrolysis in liver and tissues to form the active moiety (fluorouracil), inhibiting thymidylate synthetase, which in turn blocks methylation of deoxyuridylic acid to thymidylic acid. This step interferes with DNA and to a lesser degree with RNA synthesis.

Class Summary

These agents inhibit cell growth and proliferation.

Leucovorin

Clinical Context:  Reduced form of folic acid that does not require enzymatic reduction reaction for activation. Allows for purine and pyrimidine synthesis, both of which are needed for normal erythropoiesis. Current standard therapy for colon cancer involves combination chemotherapy. Binds to and stabilizes ternary complex of FdUTP (intracellular active metabolite of fluoropyrimidines) and thymidylate synthetase (TS), augmenting cytotoxic effects of 5-fluorouracil. Used as an adjunct to fluorouracil.

Class Summary

These agents counteract the toxic effects of the chemotherapeutic drug.

Irinotecan (Camptosar)

Clinical Context:  Semisynthetic derivative of camptothecin, an alkaloid extract from the Camptotheca acuminate tree. Inactive in its parent form. Converted by the carboxylesterase enzyme to its active metabolite from, SN-38.

SN-38 binds to and stabilizes the topoisomerase I-DNA complex and prevents the relegation of DNA after it has been cleaved by topoisomerase I, inhibiting DNA replication. Current standard therapy for metastatic colon cancer involves combination of 5-FU/LV/CPT11 chemotherapy (see Standard Therapy).

Because of toxicity problems associated with Saltz regimen (5-FU/LV/CPT11), now standard first-line therapy for metastatic colon cancer, maximum of 400 mg/m2 of 5-FU and 100 mg/m2 of CPT11 can be used as starting dose.

Tipiracil/trifluridine (Lonsurf)

Clinical Context:  Trifluridine is a thymidine-based nucleoside analog that incorporates into DNA, interferes with DNA synthesis, and inhibits cell proliferation. Tipiracil increases trifluridine exposure by inhibiting its metabolism by thymidine phosphorylase. The combination product is indicated for metastatic colorectal cancer in patients previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild-type, an anti-EGFR therapy.

Class Summary

Irinotecan is a topoisomerase I inhibitor. Trifluridine is a thymidine-based nucleoside analog that is combined with the thymidine phosphorylase inhibitor, tipiracil.

Oxaliplatin

Clinical Context:  Third-generation platinum-based antineoplastic agent used in combination with an infusion of 5-fluorouracil (5-FU) and leucovorin for treatment of metastatic colorectal cancer in patients with recurrence or progression following initial treatment with irinotecan, 5-FU, and leucovorin. Also indicated for previously untreated advanced colorectal cancer in combination with 5-FU and leucovorin. Covalently binds to DNA with preferential binding to the N-7 position of guanine and adenine. DNA mismatch repair enzymes are unable to recognize oxaliplatin-DNA adducts in contrast with other platinum-DNA adducts as a result of their bulkier size. Forms interstrand and intrastrand Pt-DNA crosslinks that inhibit DNA replication and transcription. Cytotoxicity is cell-cycle nonspecific with activity in all phases of the cell cycle.

Class Summary

Oxaliplatin is a platinum analog.

Cetuximab (Erbitux)

Clinical Context:  Recombinant, human/mouse chimeric monoclonal antibody that specifically binds to the extracellular domain of human epidermal growth factor receptors (EGFR, HER1, c-ErbB-1). Cetuximab-bound EGF receptor inhibits activation of receptor-associated kinases, resulting in inhibition of cell growth, induction of apoptosis, and decreased production of matrix metalloproteinase and vascular endothelial growth factor.

Indicated for treatment of KRAS mutation-negative (wild-type) EGFR-expressing, metastatic colorectal cancer for the following: 1) in combination with FOLFIRI for first-line treatment, 2) in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy, and 3) as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Bevacizumab (Avastin, Mvasi)

Clinical Context:  Murine derived monoclonal antibody that inhibits angiogenesis by targeting and inhibiting vascular endothelial growth factor (VEGF). Inhibiting new blood vessel formation denies blood, oxygen, and other nutrients needed for tumor growth. Bevacizumab is indicated in combination with a fluoropyrimidine-based chemotherapy as a first-line or second-line treatment for metastatic colorectal cancer. It is also indicated for second-line treatment in patients who have progressed on a first-line bevacizumab-containing regimen. For continuation therapy, use bevacizumab in combination with a fluoropyrimidine (eg, 5-FU, capecitabine) plus irinotecan or oxaliplatin-based chemotherapy. Mvasi has been FDA-approved as a biosimilar to Avastin but not as an interchangeable product.

Panitumumab (Vectibix)

Clinical Context:  Recombinant human IgG2 kappa monoclonal antibody that binds to human epidermal growth factor receptor (EGFR). Indicated for wild-type KRAS (exon 2 in codons 12 or 13) metastatic colororectal carcinoma, as determined by an FDA-approved test. Indicated as second-line, monotherapy following disease progression after prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy. Also indicated as first-line therapy in combination with FOLFOX.

Ipilimumab (Yervoy)

Clinical Context:  Recombinant human cytotoxic T-lymphocyte antigen 4 (CTLA-4) - blocking antibody. It is indicated in combination with nivolumab for adults with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) which progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.

Class Summary

These agents target factors responsible for deregulated cell proliferation.

Ziv-aflibercept (Zaltrap)

Clinical Context:  Vascular endothelial growth factor (VEGF) inhibitor; prevents VEGF from stimulating cellular responses by binding to tyrosine kinase receptors (ie, the VEGF receptors). Indicated in combination with 5-fluorouracil, leucovorin, irinotecan (FOLFIRI) for metastatic colorectal cancer that is resistant to or has progressed after an oxaliplatin regimen.

Regorafenib (Stivarga)

Clinical Context:  Regorafenib is a tyrosine kinase inhibitor. It is indicated for metastatic colorectal cancer in patients who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy; an anti-VEGF therapy (eg, bevacizumab, ziv-aflibercept); and, if KRAS wild type, an anti-EGFR therapy (eg, cetuximab, panitumumab).

Class Summary

VEGF induces endothelial cell proliferation and blood vessel permeability. Inhibiting VEGF prevents tyrosine kinase stimulation. The FDA approved the VEGF inhibitor ziv-aflibercept for metastatic colorectal cancer in August 2012. Approval was based on the Aflibercept Versus Placebo in Metastatic Colorectal Cancer (mCRC) After Failure of an Oxaliplatin-Based Regimen (VELOUR) trial that included 1226 patients. Results showed that when ziv-aflibercept was used in combination with FOLFIRI, overall survival and progression-free survival improved in patients with mCRC previously treated with an oxaliplatin containing regimen.

Ramucirumab (Cyramza)

Clinical Context:  Ramucirumab specifically binds VEGF receptor 2 and blocks binding of VEGFR ligands, VEGF-A, VEGF-C, and VEGF-D. It is indicated for use in combination with FOLFIRI for the treatment of patients with metastatic colorectal cancer (mCRC) whose disease has progressed on a first-line bevacizumab-, oxaliplatin- and fluoropyrimidine-containing regimen.

Class Summary

Vascular endothelial growth factor (VEGF) receptor antagonists disrupt ligand-induced proliferation and migration of human endothelial cells. Angiogenesis requires the binding of signaling molecules (eg, VEGF) to receptors on the surface of normal endothelial cells. When VEGF and other endothelial growth factors bind to their receptors on endothelial cells, signals within these cells are initiated that promote the growth and survival of new blood vessels. When VEGF is bound, angiogenesis is inhibited.

Pembrolizumab (Keytruda)

Clinical Context:  Monoclonal antibody to programmed cell death-1 protein (PD-1); blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2. This negative feedback loop is essential for maintaining normal immune responses and limits T-cell activity to protect normal cells during chronic inflammation. It is indicated for unresectable or metastatic colon cancer that has tested positive for microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR), and has progressed following treatment with a fluoropyrimidine (eg, 5-FU, capecitabine), oxaliplatin, and irinotecan.

Nivolumab (Opdivo)

Clinical Context:  Nivolumab is a fully human immunoglobulin G4 (IgG4) monoclonal antibody that selectively inhibits programmed cell death-1 (PD-1) activity by binding to the PD-1 receptor to block the ligands PD-L1 and PD-L2 from binding. The negative PD-1 receptor signaling that regulates T-cell activation and proliferation is therefore disrupted. This releases PD-1 pathway-mediated inhibition of the immune response, including the antitumor immune response. It is indicated for unresectable or metastatic colon cancer that has tested positive for microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR), and has progressed following treatment with a fluoropyrimidine (eg, 5-FU, capecitabine), oxaliplatin, and irinotecan in patients ≥ 12 years. Additionally, it is also indicated in combination with ipilimumab for adults.

Class Summary

Tumor cells may circumvent T-cell–mediated cytotoxicity by expressing PD-L1 on the tumor itself or on tumor-infiltrating immune cells, resulting in the inhibition of immune-mediated killing of tumor cells.

Larotrectinib (Vitrakvi)

Clinical Context:  Highly selective inhibitor of tropomyosin receptor kinases (TRK), TRKA, TRKB, and TRKC. In tumor models, larotrectinib demonstrates antitumor activity in cells by activation of TRK proteins resulting from gene fusions, deletion of a protein regulatory domain, or in cells with TRK overexpression

Entrectinib (Rozlytrek)

Clinical Context:  Selectively inhibits TRKA, TRKB, and TRKC. Indicated for adults and children aged 12 years or older with solid tumors that have a neurotrophic tyrosine receptor kinase (NTRK) gene fusion without a known acquired resistance mutation.

Class Summary

Larotrectinib selectively inhibits tropomyosin receptor kinases (TRKs). Entrectinib and its major metabolite TRKs, proto-oncogene tyrosine-protein kinase ROS1 (ROS1), and anaplastic lymphoma kinase (ALK).[172]  

What is colon cancer?What is the role of surgery in the treatment of colon cancer?What are the signs and symptoms of colon cancer?Which physical findings suggest colon cancer?Which lab studies are used to detect colon cancer?Which imaging studies are helpful in the staging of colon cancer?Which procedures may be warranted in the evaluation of suspected colon cancer?What are the surgical options to treat colon cancer?What are the nonsurgical therapeutic options for colon cancer?What are the regimens used for systemic chemotherapy in the treatment of colon cancer?What are the regimens used for adjuvant (postoperative) chemotherapy in the treatment of colon cancer?Which biologic agents are used in the treatment of colon cancer?What is the efficacy of screening in the prevention of colorectal cancer?How are research advances in colorectal cancer used to improve treatment outcomes?What is the pathophysiology of colon cancer?What is the role of the APC gene (adenomatous polyposis gene) in the pathophysiology of colon cancer?What is the role of abnormal DNA methylation in the pathophysiology of colon cancer?What is the role of genetics in colon carcinogenesis?What is the role of deficient DNA mismatch repair in the pathophysiology of colon cancer?What causes colon cancer?What is the greatest factor in the etiology of colon cancer?What is the risk for developing colon cancer in patients with hereditary nonpolyposis colon cancer syndrome (HNPCC, Lynch syndrome)?What percentage of colon cancer is due to a hereditary nonpolyposis colon cancer syndrome (HNPCC, Lynch syndrome) etiology?What is the role of diet in the etiology of colon cancer?Which factors are associated with a lower risk for colon cancer?What is the role of obesity and lifestyle in the etiology of colon cancer?What is the association between body mass index (BMI) and the risk of colon cancer?What is the role of the WNT signaling pathway in the etiology of colon cancer?What is the role of inflammatory bowel diseases in the etiology of colon cancer?What is the role of antibiotics in the etiology of colon cancer?What is the trend in the incidence and mortality of colon cancer in the US?What is the estimate of new colon cancer cases in 2020 in the US?What is the effect of colonoscopy on colon cancer mortality?What is the global incidence of colon cancer?How do the mortality rates for colon cancer vary geographically?What is the incidence of colon cancer in Europe?What is the racial predilections for colon cancer?How does the incidence of colon cancer vary by sex?How does the incidence of colon cancer vary by age?What is the 5-year survival rate for colorectal cancer in the US?What are independent predictors of worse outcome in patients with colorectal liver metastases?What are predictors of survival in colon cancer?What are predictors of clinical outcome in colon cancer?What is the race-related disparities in the prognosis of colon cancer?How does body mass index (BMI) affect the prognosis of colon cancer?How does cadherin-associated protein ? 1 (CTNNB1 or ?-catenin) affect the survival of patients with colon cancer?How does aspirin affect the prognosis of colon cancer?How do mental health conditions affect the prognosis of colon cancer?How does smoking affect the prognosis of colon cancer?What are the signs and symptoms of colon cancer?Which physical findings are characteristic of colon cancer?Which conditions should be included in the differential diagnoses of colon cancer?What are the differential diagnoses for Colon Cancer?What is the role of screening in the diagnosis of colon cancer?What are the American College of Gastroenterology screening guidelines for colon cancer?When is hereditary nonpolyposis colon cancer syndrome (HNPCC, Lynch syndrome) testing indicated in the evaluation of colon cancer?Which tests are performed following tissue diagnosis confirmation of colon cancer?What drives further workup following a colon cancer diagnosis?Which lab studies are performed in the workup of colon cancer?How is a serum carcinoembryonic antigen (CEA) level used in the workup of colon cancer?What are the roles of CT scanning and MRI in the workup of colon cancer?What is the role of positron emission tomography (PET) scanning in the workup of colon cancer?What is the goal of colorectal cancer screening?What is the joint guideline for colon cancer screening from the American Cancer Society, US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology?What are the screening options for colon cancer?Which colon cancer screening tests detect adenomatous polyps and malignancy?Which tests primarily detect colon cancer?What is the benefit of flexible sigmoidoscopy compared to stool-based tests in the screening for colon cancer?How are FIT kits used to screen for colon cancer?Why is colonoscopy colon cancer screening contraindicated in patients on clopidogrel therapy?How is Cologuard used to screen for colon cancer?How is Epi proColon used to screen for colon cancer?What are high-risk factors that indicate screening for colon cancer at an earlier age?How are patients with hereditary familial syndromes screened for colon cancer?What are the benefits of an earlier screening age for colon cancer?How can screening for colon cancer be increased in ethnically diverse populations?How is capsule colonoscopy used to screen for colon cancer?What are the American College of Gastroenterology (ACG) guidelines for colorectal cancer screening?What are alternative cancer detection tests recommended in the American College of Gastroenterology (ACG) guidelines?What are the screening considerations for patients with one first-degree relative diagnosed with colorectal cancer or advanced adenoma?What is the recommended scheduling of follow-up screening for colon cancer based on colonoscopy findings?What are the American Society for Clinical Pathology, the College of American Pathologists (CAP), the Association for Molecular Pathology, and the American Society of Clinical Oncology (ASCO) evidence-based guidelines on colorectal cancer molecular test..What is the TNM staging of colon cancer?How is colon cancer staged?What are the prognostic factors associated with staging of colon cancer?Which features are associated with worse prognosis of colon cancer?Which molecular prognostic factors are not yet incorporated into standard clinical practice for colon cancer?What is the significance of KRAS mutations in colon cancer?What is the significance of deficient mismatch repair (dMMR) in colon cancer?What is the 5-year relapse-free survival rate for T3 or T4 colorectal cancer?How does the prognosis of colon cancer vary by stage?What are the revisions of the TN categorization for colon cancer?What are the histologic subtype and metastatic patterns for colon cancer?What is the role of surgery in the treatment of colon cancer?What is included in the treatment of colon cancer?What is the standard management of metastatic colorectal cancer?What are the indications for surgery to treat colon cancer?What surgery is indicated for lesions in the cecum and right colon?What surgery is indicated for lesions in the proximal or middle transverse colon?What surgery is indicated for lesions in the splenic flexure and left colon?What surgery is indicated for sigmoid colon lesions?What are the indications for total abdominal colectomy with ileorectal anastomosis for the treatment of colon cancer?What is the role of laparoscopic surgery in the treatment of colon cancer?What is the standard management for metastatic colorectal cancer?How is asymptomatic, surgically incurable colorectal cancer managed?What is the role of surgery in the treatment of liver metastases in colon cancer?What is the role of hepatic arterial infusion (HAI) in the treatment of colon cancer?What is the role of colonic stents in the treatment of colon cancer?What is the role of cryotherapy in the treatment of colon cancer?How is radiofrequency ablation (RFA) used to treat colon cancer?What is the role of cetuximab in the treatment of colon cancer?What is the role of adjuvant therapy in the treatment of colon cancer?How is adjuvant therapy used to treat colon cancer in elderly patients?What is the role of fluorouracil in the treatment of colon cancer?What is the role of capecitabine (Xeloda) in the treatment of colon cancer?What is the optimal duration of adjuvant therapy for colon cancer?How is risk status used to determine the duration of adjuvant therapy for colon cancer?What is the role of adjuvant chemotherapy for stage II colon cancer?What is the efficacy of adjuvant chemotherapy for stage II colon cancer?What is the efficacy of combination regimens in the treatment of metastatic colon cancer?How is fluorouracil used to treat patients with metastatic colon cancer?What has impeded the development of evidence-based treatment guidelines for colon cancer in elderly patients?What is the role of tipiracil/trifluridine (Lonsurf) in the treatment of colon cancer?Which biologic agents are used to treat colon cancer?What is the role of bevacizumab in the treatment of colon cancer?What is the efficacy of bevacizumab in the treatment of colon cancer?What is Mvasi (bevacizumab-awwb) and how is it used to treat colon cancer?What are the efficacy of cetuximab in the treatment of colon cancer?What is the role of panitumumab in the treatment of colon cancer?How is panitumumab used in the treatment of wild-type RAS (both KRAS and NRAS) metastatic colorectal cancer?What is the role of ramucirumab in the treatment of colon cancer?What is the role of nivolumab in the treatment of colon cancer?What is the role of pembrolizumab in the treatment of colon cancer?What is the role of regorafenib in the treatment of colon cancer?What is the role of ziv-aflibercept in the treatment of colon cancer?What is the role of larotrectinib in the treatment of colon cancer?What is the role of immunotherapy in the treatment of colon cancer?How is HER2-positive colon cancer treated?What is the role of radiation therapy in the treatment of colon cancer?What new and selective ways of administering radiation therapy to treat colon cancer are being investigated?How does the addition of radioembolization with yttrium-90 affect the outcomes for patients with colon cancer?What is the role of dietary fiber in the development of colon cancer?When should a surgical consultation be obtained for patients with colon cancer?When is a gastroenterology (GI) consultation needed in the treatment of colon cancer?What is included in the long-term monitoring of patients with colon cancer?What are the guidelines for the follow-up care of survivors of stages II and III colorectal cancer?What are the strategies for colorectal cancer prevention?What lifestyle factors contribute to the prevention of colon cancer?How does diet and physical activity affect the risk for recurrence of colon cancer?How is calcium and vitamin D supplementation used to prevent colon cancer?What is the role of medications in the prevention of colon cancer?How is celecoxib (Celebrex) used to prevent colon cancer?How is aspirin used to prevent colon cancer?How is a combination of sulindac and dimethylformamine (DMFO) used to prevent colon cancer?Which organization have issued guidelines for colon cancer?How do the screening guidelines for colon cancer differ from one another?What are the guidelines for the screening of colon cancer in asymptomatic men and women?Which patient groups should undergo screening for colon cancer at an earlier age?Which colon cancer screening tests detect adenomatous polyps and cancer?Which colon cancer screening tests primarily detect colon cancer?What are the 2018 revised ACS colorectal cancer screening guidelines?What are the USPSTF guidelines for colon cancer screening?What stool-based screening tests and intervals are used to detect colon cancer?What are the direct visualization screening tests for colon cancer?What are the American College of Physicians guidelines for colon cancer screening?What are the recommendations for interval screening with fecal testing or flexible sigmoidoscopy?What are the American College of Gastroenterology (ACG) guidelines for colorectal cancer screening?What are alternative colon cancer detection tests recommended in the American College of Gastroenterology (ACG) guidelines?What are the American College of Gastroenterology (ACG) guidelines for patients with first-degree relative diagnosed with colon cancer?What are the National Comprehensive Cancer Network (NCCN) guidelines for colon cancer screening?What are the NCCN guidelines for colon cancer screening in patients at increased risk?What are the NCCN guidelines for evaluation for high-risk syndromes of colon cancer?Which organizations have published guidelines for hereditary nonpolyposis colorectal cancer (HNPCC) screening?What are the American Gastroenterological Association guidelines for Lynch syndrome screening?What are the European Society for Medical Oncology (ESMO) guidelines for familial risk-colorectal cancer?What are the Bethesda guidelines for Lynch syndrome and microsatellite instability in colon cancer?What are the US Multi-Society Task Force on Colorectal Cancer guidelines for postpolypectomy surveillance?What are the BSG/ACPGBI/PHE guidelines on postpolypectomy surveillance?What are the European Society of Medical Oncology guidelines for colon cancer surveillance of classic familial adenomatous polyposis (FAP)?What are the European Society of Medical Oncology guidelines for colon cancer surveillance of attenuated familial adenomatous polyposis (FAP)?What are the American Society of Colon and Rectal Surgeons guidelines for colon cancer surveillance in patients with familial adenomatous polyposis (FAP)?What are the NCCN-recommended adjuvant therapy regimens for colon cancer?What are the American Society of Clinical Oncology (ASCO) recommendations for adjuvant chemotherapy in the treatment of colon cancer?Which organizations have issued guidelines on follow-up care for survivors of stage II and stage III colorectal cancer?What are the US Multi-Society Task Force on Colorectal Cancer guidelines for colonoscopy after colorectal cancer resection?What is the American Society for Clinical Pathology (ASCP), the College of American Pathologists (CAP), the Association for Molecular Pathology (AMP), and the American Society of Clinical Oncology (ASCO) guidelines for gene mutation testing in colon can..What are the European Society of Medical Oncology (ESMO) treatment guidelines for patients with metastatic colorectal carcinoma (mCRC)?What are the NCCN guidelines on targeted therapy to treat colon cancer?What are the American Society of Colon and Rectal Surgeons surgical guidelines for colon cancer?What are the NCCN guidelines for use of laparoscopic-assisted colectomy in the treatment of colon cancer?What are the NCCN recommendations for lymphadenectomy in the treatment of colon cancer?What are the most commonly used chemotherapy regimens for colon cancer?What are the indications for use of pembrolizumab to treat colon cancer?Which medications in the drug class PD-1/PD-L1 Inhibitors are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastics, VEGF Inhibitor are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastics, Tyrosine Kinase Inhibitors are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastic Agent, Monoclonal Antibody are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastic Agent, Alkylating Agent are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastic Agent, Miscellaneous are used in the treatment of Colon Cancer?Which medications in the drug class Antidote, Folic Acid Antagonist are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastic Agent, Antimetabolite (pyrimidine analog) are used in the treatment of Colon Cancer?Which medications in the drug class Antineoplastics, Other are used in the treatment of Colon Cancer?

Author

Tomislav Dragovich, MD, PhD, Chief, Section of Hematology and Oncology, Banner MD Anderson Cancer Center

Disclosure: Nothing to disclose.

Coauthor(s)

Vassiliki Liana Tsikitis, MD, MCR, MBA, FACS, FASCRS, Professor of Surgery, Medical Director of Digestive Health Center, Department of Surgery, Chief of Division of Gastrointestinal and General Surgery, Oregon Health and Science University School of Medicine

Disclosure: Nothing to disclose.

Specialty Editors

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

N Joseph Espat, MD, MS, FACS, Harold J Wanebo Professor of Surgery, Assistant Dean of Clinical Affairs, Boston University School of Medicine; Chairman, Department of Surgery, Director, Adele R Decof Cancer Center, Roger Williams Medical Center

Disclosure: Nothing to disclose.

Additional Contributors

Philip Schulman, MD, Chief, Medical Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center

Disclosure: Nothing to disclose.

References

  1. PDQ Adult Treatment Editorial Board. Colon Cancer Treatment–Health Professional Version. National Cancer Institute. Available at http://www.cancer.gov/types/colorectal/hp/colon-treatment-pdq. January 22, 2020; Accessed: February 19, 2020.
  2. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004 Jan 1. 22(1):23-30. [View Abstract]
  3. Haller DG, Catalano PJ, Macdonald JS, O'Rourke MA, Frontiera MS, Jackson DV. Phase III study of fluorouracil, leucovorin, and levamisole in high-risk stage II and III colon cancer: final report of Intergroup 0089. J Clin Oncol. 2005 Dec 1. 23(34):8671-8. [View Abstract]
  4. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004 Jun 3. 350(23):2335-42. [View Abstract]
  5. [Guideline] Desch CE, Benson AB 3rd, Somerfield MR, et al. Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2005 Nov 20. 23(33):8512-9. [View Abstract]
  6. Sanoff HK, Sargent DJ, Campbell ME, et al. Five-year data and prognostic factor analysis of oxaliplatin and irinotecan combinations for advanced colorectal cancer: N9741. J Clin Oncol. 2008 Dec 10. 26(35):5721-7. [View Abstract]
  7. Chu, E and DeVita VT. Physicians’ cancer chemotherapy drug manual. Jones and Bartlett publishers. 2008.
  8. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1. 319(9):525-32. [View Abstract]
  9. Burn J, Bishop DT, Mecklin JP, Macrae F, et al. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med. 2008 Dec 11. 359(24):2567-78. [View Abstract]
  10. Meyerhardt JA, Niedzwiecki D, Hollis D, et al. Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA. 2007 Aug 15. 298(7):754-64. [View Abstract]
  11. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011 Nov 10. 343:d6617. [View Abstract]
  12. Pala V, Sieri S, Berrino F, et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int J Cancer. 2011 Dec 1. 129(11):2712-9. [View Abstract]
  13. Harrison P. Proinflammatory Diet Contributes to CRC Risk in Both Sexes. Medscape Medical News. Available at https://www.medscape.com/viewarticle/891665. January 23, 2018; Accessed: January 30, 2018.
  14. Tabung FK, Liu L, Wang W, Fung TT, Wu K, Smith-Warner SA, et al. Association of Dietary Inflammatory Potential With Colorectal Cancer Risk in Men and Women. JAMA Oncol. 2018 Jan 18. [View Abstract]
  15. Tsoi KK, Pau CY, Wu WK, Chan FK, Griffiths S, Sung JJ. Cigarette smoking and the risk of colorectal cancer: a meta-analysis of prospective cohort studies. Clin Gastroenterol Hepatol. 2009 Jun. 7(6):682-688.e1-5. [View Abstract]
  16. Cho E, Lee JE, Rimm EB, Fuchs CS, Giovannucci EL. Alcohol consumption and the risk of colon cancer by family history of colorectal cancer. Am J Clin Nutr. 2012 Feb. 95(2):413-9. [View Abstract]
  17. Yuhara H, Steinmaus C, Cohen SE, Corley DA, Tei Y, Buffler PA. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer?. Am J Gastroenterol. 2011 Nov. 106(11):1911-21; quiz 1922. [View Abstract]
  18. Jacobs ET, Ahnen DJ, Ashbeck EL, Baron JA, Greenberg ER, Lance P, et al. Association between body mass index and colorectal neoplasia at follow-up colonoscopy: a pooling study. Am J Epidemiol. 2009 Mar 15. 169(6):657-66. [View Abstract]
  19. Bailly L, Fabre R, Pradier C, Iannelli A. Colorectal Cancer Risk Following Bariatric Surgery in a Nationwide Study of French Individuals With Obesity. JAMA Surg. 2020 Mar 11. [View Abstract]
  20. Morikawa T, Kuchiba A, Lochhead P, et al. Prospective Analysis of Body Mass Index, Physical Activity, and Colorectal Cancer Risk Associated with ß-Catenin (CTNNB1) Status. Cancer Res. 2013 Mar 1. 73(5):1600-10. [View Abstract]
  21. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019 Mar 22. 363 (6433):1345-1349. [View Abstract]
  22. Zhang J, Haines C, Watson AJM, Hart AR, Platt MJ, Pardoll DM, et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study. Gut. 2019 Aug 19. [View Abstract]
  23. Surveillance, Epidemiology, and End Results Program. SEER Stat Fact Sheets: Colorectal Cancer. National Cancer Institute. Available at http://seer.cancer.gov/statfacts/html/colorect.html. Accessed: February 19, 2020.
  24. Cancer Facts & Figures 2020. American Cancer Society. Available at https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf. Accessed: February 19, 2020.
  25. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, et al. Colorectal Cancer Incidence Patterns in the United States, 1974–2013. J Natl Cancer Inst. 28 February 2017. 109:
  26. Kahi CJ, Pohl H, Myers LJ, Mobarek D, Robertson DJ, Imperiale TF. Colonoscopy and Colorectal Cancer Mortality in the Veterans Affairs Health Care System: A Case-Control Study. Ann Intern Med. 2018 Mar 13. [View Abstract]
  27. World Health Organization, International Agency for Research on Cancer. Colorectal Cancer: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. International Agency for Research on Cancer. Available at http://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf. Accessed: May 21, 2019.
  28. Malvezzi M, Carioli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C, et al. European cancer mortality predictions for the year 2018 with focus on colorectal cancer. Ann Oncol. 2018 Mar 19. [View Abstract]
  29. DeSantis CE, Miller KD, Goding Sauer A, Jemal A, Siegel RL. Cancer statistics for African Americans, 2019. CA Cancer J Clin. 2019 May. 69 (3):211-233. [View Abstract]
  30. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan. 69 (1):7-34. [View Abstract]
  31. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020 Mar 5. [View Abstract]
  32. Meester RGS, Mannalithara A, Lansdorp-Vogelaar I, Ladabaum U. Trends in Incidence and Stage at Diagnosis of Colorectal Cancer in Adults Aged 40 Through 49 Years, 1975-2015. JAMA. 2019 May 21. 321 (19):1933-1934. [View Abstract]
  33. Chua TC, Saxena A, Chu F, Zhao J, Morris DL. Predictors of cure after hepatic resection of colorectal liver metastases: an analysis of actual 5- and 10-year survivors. J Surg Oncol. 2011 Jun. 103(8):796-800. [View Abstract]
  34. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999 Sep. 230(3):309-18; discussion 318-21. [View Abstract]
  35. Aggarwal C, Meropol NJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, et al. Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann Oncol. 2012 Oct 1. [View Abstract]
  36. Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, et al. Regulatory T Cell Infiltration Predicts Outcome Following Resection of Colorectal Cancer Liver Metastases. Ann Surg Oncol. 2012 Sep 26. [View Abstract]
  37. Yothers G, Sargent DJ, Wolmark N, et al. Outcomes Among Black Patients With Stage II and III Colon Cancer Receiving Chemotherapy: An Analysis of ACCENT Adjuvant Trials. J Natl Cancer Inst. 2011 Oct 19. 103(20):1498-1506. [View Abstract]
  38. Campbell PT, Newton CC, Dehal AN, et al. Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol. 2012 Jan 1. 30(1):42-52. [View Abstract]
  39. Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol. 2013 Mar 1. 31(7):876-85. [View Abstract]
  40. Morikawa T, Kuchiba A, Yamauchi M, et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA. 2011 Apr 27. 305(16):1685-94. [View Abstract]
  41. Rothwell PM, Fowkes GR, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomized trials. Lancet. Dec 7/2010; Early online publication.
  42. Burn J, Gerdes AM, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011 Dec 17. 378(9809):2081-7. [View Abstract]
  43. Baillargeon J, Kuo YF, Lin YL, et al. Effect of mental disorders on diagnosis, treatment, and survival of older adults with colon cancer. J Am Geriatr Soc. 2011 Jul. 59(7):1268-73. [View Abstract]
  44. Phipps AI, Baron J, Newcomb PA. Prediagnostic smoking history, alcohol consumption, and colorectal cancer survival: The Seattle Colon Cancer Family Registry. Cancer. 2011 Nov 1. 117(21):4948-57. [View Abstract]
  45. Dehal AN, Newton CC, Jacobs EJ, et al. Impact of diabetes mellitus and insulin use on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol. 2012 Jan 1. 30(1):53-9. [View Abstract]
  46. Arhi CS, Ziprin P, Bottle A, Burns EM, Aylin P, Darzi A. Colorectal cancer patients under the age of 50 experience delays in primary care leading to emergency diagnoses: a population-based study. Colorectal Dis. 2019 Aug 6. [View Abstract]
  47. Rex DK, Johnson DA, Anderson JC, Schoenfeld PS, Burke CA, Inadomi JM. American College of Gastroenterology guidelines for colorectal cancer screening 2009 [corrected]. Am J Gastroenterol. 2009 Mar. 104(3):739-50. [View Abstract]
  48. Mulcahy N. Test all colorectal cancers for Lynch syndrome. NCCN: Medscape Medical News. Available at http://www.medscape.com/viewarticle/821981. March 14, 2014; Accessed: January 30, 2018.
  49. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004 Feb 18. 96(4):261-8. [View Abstract]
  50. Thirunavukarasu P, Sukumar S, Sathaiah M, Mahan M, Pragatheeshwar KD, Pingpank JF, et al. C-stage in Colon Cancer: Implications of Carcinoembryonic Antigen Biomarker in Staging, Prognosis, and Management. J Natl Cancer Inst. 2011 Apr 20. 103(8):689-97. [View Abstract]
  51. Littlejohn C, Hilton S, Macfarlane GJ, Phull P. Systematic review and meta-analysis of the evidence for flexible sigmoidoscopy as a screening method for the prevention of colorectal cancer. Br J Surg. 2012 Sep 21. [View Abstract]
  52. Holme O, et al for the NORCCAP Study Group. Long-Term Effectiveness of Sigmoidoscopy Screening on Colorectal Cancer Incidence and Mortality in Women and Men: A Randomized Trial. Ann Intern Med. 24 April 2018.
  53. Wilschut JA, Habbema JD, van Leerdam ME, et al. Fecal occult blood testing when colonoscopy capacity is limited. J Natl Cancer Inst. 2011 Dec 7. 103(23):1741-51. [View Abstract]
  54. Jensen CD, Corley DA, Quinn VP, Doubeni CA, Zauber AG, Lee JK, et al. Fecal Immunochemical Test Program Performance Over 4 Rounds of Annual Screening: A Retrospective Cohort Study. Ann Intern Med. 2016 Jan 26. [View Abstract]
  55. Corley DA, Jensen CD, Quinn VP, Doubeni CA, Zauber AG, Lee JK, et al. Association Between Time to Colonoscopy After a Positive Fecal Test Result and Risk of Colorectal Cancer and Cancer Stage at Diagnosis. JAMA. 2017 Apr 25. 317 (16):1631-1641. [View Abstract]
  56. Douglas D. Clopidogrel Boosts Bleeding Risk After Polypectomy. Available at http://www.medscape.com/viewarticle/782323. Accessed: April 24, 2013.
  57. Gandhi S, Narula N, Mosleh W, Marshall JK, Farkouh M. Meta-analysis: colonoscopic post-polypectomy bleeding in patients on continued clopidogrel therapy. Aliment Pharmacol Ther. 2013 May. 37(10):947-52. [View Abstract]
  58. Nelson R. FDA Approves Cologuard for Colorectal Cancer Screening. Medscape Medical News. Available at http://www.medscape.com/viewarticle/829757. August 11, 2014; Accessed: January 30, 2018.
  59. Brooks M. FDA Clears First Blood-Based Colorectal Cancer Screening Test. Medscape Medical News. Available at https://www.medscape.com/viewarticle/861942. April 14, 2016; Accessed: January 30, 2018.
  60. [Guideline] Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008 May-Jun. 58(3):130-60. [View Abstract]
  61. McNamara D. Start Colon Cancer Screening at Age 45, Evidence Suggests. Medscape Medical News. Available at https://www.medscape.com/viewarticle/887768. October 30, 2017; Accessed: January 30, 2018.
  62. Lasser KE, Murillo J, Lisboa S, et al. Colorectal cancer screening among ethnically diverse, low-income patients: a randomized controlled trial. Arch Intern Med. 2011 May 23. 171(10):906-12. [View Abstract]
  63. Spada C, De Vincentis F, Cesaro P, Hassan C, Riccioni ME, Minelli Grazioli L, et al. Accuracy and safety of second-generation PillCam COLON capsule for colorectal polyp detection. Therap Adv Gastroenterol. 2012 May. 5(3):173-8. [View Abstract]
  64. [Guideline] Gupta S, Lieberman D, Anderson JC, Burke CA, Dominitz JA, Kaltenbach T, et al. Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2020 Feb 5. 143(3):844-57. [View Abstract]
  65. [Guideline] Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J Clin Oncol. 2017 May 1. 35 (13):1453-1486. [View Abstract]
  66. American Joint Committee on Cancer. Colon and Rectum. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, et al, eds. AJCC Cancer staging manual. 8th ed. New York: Springer; 2017.
  67. Ogino S, Kawasaki T, Kirkner GJ, Ohnishi M, Fuchs CS. 18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high. BMC Cancer. 2007 May 2. 7:72. [View Abstract]
  68. Jimeno A, Messersmith WA, Hirsch FR, Franklin WA, Eckhardt SG. KRAS Mutations and Sensitivity to Epidermal Growth Factor Receptor Inhibitors in Colorectal Cancer: Practical Application of Patient Selection. J Clin Oncol. 2009 Jan 5. [View Abstract]
  69. Quasar Collaborative Group, Gray R, Barnwell J, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007 Dec 15. 370(9604):2020-9. [View Abstract]
  70. Saltz LB, Kelsen DP. Adjuvant treatment of colorectal cancer. Annu Rev Med. 1997. 48:191-202. [View Abstract]
  71. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003 Jul 17. 349(3):247-57. [View Abstract]
  72. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011 Feb 20. 29(6):610-8. [View Abstract]
  73. Le Voyer TE, Sigurdson ER, Hanlon AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol. 2003 Aug 1. 21(15):2912-9. [View Abstract]
  74. Gunderson LL, Jessup JM, Sargent DJ, Greene FL, Stewart AK. Revised TN categorization for colon cancer based on national survival outcomes data. J Clin Oncol. 2010 Jan 10. 28(2):264-71. [View Abstract]
  75. Hugen N, van de Velde CJ, de Wilt JH, Nagtegaal ID. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014 Mar. 25(3):651-7. [View Abstract]
  76. Boggs W. Histology influences colorectal cancer metastatic pattern. Reuters Health Information. March 11, 2014.
  77. Boller AM, Nelson H. Colon and rectal cancer: laparoscopic or open?. Clin Cancer Res. 2007 Nov 15. 13(22 Pt 2):6894s-6s. [View Abstract]
  78. Fleshman J, Sargent DJ, Green E, Anvari M, Stryker SJ, Beart RW Jr. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg. 2007 Oct. 246(4):655-62; discussion 662-4. [View Abstract]
  79. Jayne DG, Guillou PJ, Thorpe H, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol. 2007 Jul 20. 25(21):3061-8. [View Abstract]
  80. Kuhry E, Schwenk WF, Gaupset R, Romild U, Bonjer HJ. Long-term results of laparoscopic colorectal cancer resection. Cochrane Database Syst Rev. 2008 Apr 16. CD003432. [View Abstract]
  81. Lacy AM, Delgado S, Castells A, et al. The long-term results of a randomized clinical trial of laparoscopy-assisted versus open surgery for colon cancer. Ann Surg. 2008 Jul. 248(1):1-7. [View Abstract]
  82. Veldkamp R, Kuhry E, Hop WC, et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005 Jul. 6(7):477-84. [View Abstract]
  83. Poultsides GA, Servais EL, Saltz LB, Patil S, Kemeny NE, Guillem JG. Outcome of Primary Tumor in Patients With Synchronous Stage IV Colorectal Cancer Receiving Combination Chemotherapy Without Surgery As Initial Treatment. J Clin Oncol. 2009 Jun 1. [View Abstract]
  84. Nitzkorski JR, Farma JM, Watson JC, Siripurapu V, Zhu F, Matteotti RS, et al. Outcome and natural history of patients with stage IV colorectal cancer receiving chemotherapy without primary tumor resection. Ann Surg Oncol. 2012 Feb. 19(2):379-83. [View Abstract]
  85. Venderbosch S, de Wilt JH, Teerenstra S, et al. Prognostic value of resection of primary tumor in patients with stage IV colorectal cancer: retrospective analysis of two randomized studies and a review of the literature. Ann Surg Oncol. 2011 Nov. 18(12):3252-60. [View Abstract]
  86. Di Benedetto F, Berretta M, D'Amico G, et al. Liver resection for colorectal metastases in older adults: a paired matched analysis. J Am Geriatr Soc. 2011 Dec. 59(12):2282-90. [View Abstract]
  87. Brouquet A, Overman MJ, Kopetz S, et al. Is resection of colorectal liver metastases after a second-line chemotherapy regimen justified?. Cancer. 2011 Oct 1. 117(19):4484-92. [View Abstract]
  88. House MG, Kemeny NE, Gonen M, et al. Comparison of adjuvant systemic chemotherapy with or without hepatic arterial infusional chemotherapy after hepatic resection for metastatic colorectal cancer. Ann Surg. 2011 Dec. 254(6):851-6. [View Abstract]
  89. van Hooft JE, Bemelman WA, Oldenburg B, et al. Colonic stenting versus emergency surgery for acute left-sided malignant colonic obstruction: a multicentre randomised trial. Lancet Oncol. 2011 Apr. 12(4):344-52. [View Abstract]
  90. Sargent D, Sobrero A, Grothey A, O'Connell MJ, Buyse M, Andre T, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2009 Feb 20. 27(6):872-7. [View Abstract]
  91. van Erning FN, Creemers GJ, De Hingh IH, Loosveld OJ, Goey SH, Lemmens VE. Reduced risk of distant recurrence after adjuvant chemotherapy in patients with stage III colon cancer aged 75 years or older. Ann Oncol. 2013 Aug 8. [View Abstract]
  92. André T, Iveson T, Labianca R, Meyerhardt JA, Souglakos I, Yoshino T, et al. The IDEA (International Duration Evaluation of Adjuvant Chemotherapy) Collaboration: Prospective Combined Analysis of Phase III Trials Investigating Duration of Adjuvant Therapy with the FOLFOX (FOLFOX4 or Modified FOLFOX6) or XELOX (3 versus 6 months) Regimen for Patients with Stage III Colon Cancer: Trial Design and Current Status. Curr Colorectal Cancer Rep. 2013. 9:261-269. [View Abstract]
  93. [Guideline] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Colon Cancer. Available at http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site. Version 2.2019 — May 15, 2019; Accessed: May 25, 2019.
  94. Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004 Aug 15. 22(16):3408-19. [View Abstract]
  95. O'Connor ES, Greenblatt DY, LoConte NK, et al. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. J Clin Oncol. 2011 Sep 1. 29(25):3381-8. [View Abstract]
  96. Pawlik TM, Raut CP, Rodriguez-Bigas MA. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers. 2004. 20 (4-5):199-206. [View Abstract]
  97. Petrelli F, Labianca R, Zaniboni A, et al. Assessment of Duration and Effects of 3 vs 6 Months of Adjuvant Chemotherapy in High-Risk Stage II Colorectal Cancer: A Subgroup Analysis of the TOSCA Randomized Clinical Trial. JAMA Oncol. 2020 Feb 13. [View Abstract]
  98. Kim GP, Sargent DJ, Mahoney MR, Rowland KM Jr, Philip PA, Mitchell E, et al. Phase III noninferiority trial comparing irinotecan with oxaliplatin, fluorouracil, and leucovorin in patients with advanced colorectal carcinoma previously treated with fluorouracil: N9841. J Clin Oncol. 2009 Jun 10. 27(17):2848-54. [View Abstract]
  99. Seymour MT, Thompson LC, Wasan HS, et al. Chemotherapy options in elderly and frail patients with metastatic colorectal cancer (MRC FOCUS2): an open-label, randomised factorial trial. Lancet. 2011 May 21. 377(9779):1749-59. [View Abstract]
  100. Mayer RJ, Van Cutsem E, Falcone A, Yoshino T, Garcia-Carbonero R, Mizunuma N, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 2015 May 14. 372 (20):1909-19. [View Abstract]
  101. Bennouna J, Sastre J, Arnold D, Osterlund P, Greil R, Van Cutsem E, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 2013 Jan. 14(1):29-37. [View Abstract]
  102. Kabbinavar FF, Hurwitz HI, Yi J, Sarkar S, Rosen O. Addition of bevacizumab to fluorouracil-based first-line treatment of metastatic colorectal cancer: pooled analysis of cohorts of older patients from two randomized clinical trials. J Clin Oncol. 2009 Jan 10. 27(2):199-205. [View Abstract]
  103. Koopman M, Simkens L, May A, Mol L, van Tinteren H, Punt CJA, et al. Final results and subgroup analyses of the phase 3 CAIRO3 study: Maintenance treatment with capecitabine and bevacizumab versus observation after induction treatment with chemotherapy and bevacizumab in metastatic colorectal cancer (mCRC). (abstract LBA388). Presented at: 2014 Gastrointestinal Cancers Symposium (GICS); January 18, 2014; San Francisco, Calif. J Clin Oncol. 2014. 32 (suppl 3):abstr LBA388.
  104. Nelson R. Maintenance chemo delays progression in metastatic CRC. Medscape Medical News. January 27, 2014.
  105. Tebbutt NC, Murphy F, Zannino D, et al. Risk of arterial thromboembolic events in patients with advanced colorectal cancer receiving bevacizumab. Ann Oncol. 2011 Aug. 22(8):1834-8. [View Abstract]
  106. Allegra CJ, Yothers G, O'Connell MJ, Sharif S, Petrelli NJ, Colangelo LH, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol. 2011 Jan 1. 29(1):11-6. [View Abstract]
  107. Stark, Angela. FDA approves first biosimilar for the treatment of cancer. FDA News Release. 09/14/2017. Available at https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm576112.htm
  108. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004 Jul 22. 351(4):337-45. [View Abstract]
  109. Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011 May 20. 29(15):2011-9. [View Abstract]
  110. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009 Apr 2. 360(14):1408-17. [View Abstract]
  111. Lin AY, Buckley NS, Lu AT, et al. Effect of KRAS mutational status in advanced colorectal cancer on the outcomes of anti-epidermal growth factor receptor monoclonal antibody therapy: a systematic review and meta-analysis. Clin Colorectal Cancer. 2011 Mar 1. 10(1):63-9. [View Abstract]
  112. Chustecka Z. FDA Approves Panitumumab for Use With FOLFOX in mCRC. Medscape Medical News. Available at http://www.medscape.com/viewarticle/825699. Accessed: June 2, 2014.
  113. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010 Nov 1. 28(31):4697-705. [View Abstract]
  114. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010 Nov 1. 28(31):4706-13. [View Abstract]
  115. Price TJ, Peeters M, Kim TW, Li J, Cascinu S, Ruff P, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014 May. 15(6):569-79. [View Abstract]
  116. Hecht JR, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol. 2009 Feb 10. 27(5):672-80. [View Abstract]
  117. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009 Feb 10. 27(5):663-71. [View Abstract]
  118. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013 Sep 12. 369(11):1023-34. [View Abstract]
  119. Kim TW, Elme A, Kusic Z, Park JO, Udrea AA, Kim SY, et al. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer. Br J Cancer. 2016 Nov 8. 115 (10):1206-1214. [View Abstract]
  120. Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015 Apr 10. [View Abstract]
  121. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017 Jul 19. [View Abstract]
  122. Opdivo (nivolumab) [package insert]. Bristol-Myers Squibb Company: Princeton, NJ 08543 USA. 7/2017. Available at
  123. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015 Jun 25. 372 (26):2509-20. [View Abstract]
  124. Stivarga (regorafenib) [package insert]. Wayne, NJ: Bayer HealthCare Pharmaceuticals Inc. September 2012. Available at
  125. Grothey A, Sobrero AF, Salvatore S, Falcone A, Ychou M, Heinz-Josef L, et al. Results of a phase III randomized, double-blind, placebo-controlled, multicenter trial (CORRECT) of regorafenib plus best supportive care (BSC) versus placebo plus BSC in patients with metastatic colorectal cancer (mCRC) who have progressed after standard therapies. J Clin Oncol 30, 2012 (suppl 4; abstr LBA385).
  126. Patel A, Sun W. Ziv-aflibercept in metastatic colorectal cancer. Biologics. 2014. 8:13-25. [View Abstract]
  127. Van Cutsem E, et al. Aflibercept Plus FOLFIRI vs. Placebo Plus FOLFIRI in Second-Line Metastatic Colorectal Cancer: a Post Hoc Analysis of Survival from the Phase III VELOUR Study Subsequent to Exclusion of Patients who had Recurrence During or Within 6 Months of Completing Adjuvant Oxaliplatin-Based Therapy. Target Oncol. 2016 Jun. 11 (3):383-400. [View Abstract]
  128. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012 Oct 1. 30(28):3499-506. [View Abstract]
  129. FDA approves an oncology drug that targets a key genetic driver of cancer, rather than a specific type of tumor. U.S. Food & Drug Administration. Available at https://www.fda.gov/news-events/press-announcements/fda-approves-oncology-drug-targets-key-genetic-driver-cancer-rather-specific-type-tumor. November 26, 2018; Accessed: June 5, 2019.
  130. Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N Engl J Med. 2019 Oct 24. 381 (17):1632-1643. [View Abstract]
  131. Harrison P. HER2 Therapy in Advanced Colorectal Cancer: 'Extraordinary'. Medscape Medical News. Available at http://www.medscape.com/viewarticle/862774?nlid=104521_2203&src=WNL_mdplsnews_160506_mscpedit_honc&uac=72886PK&spon=7&impID=1087286&faf=1. May 3, 2016; Accessed: May 7, 2016.
  132. Sartore-Bianchi A, Trusolino L, Martino C, Bencardino K, Lonardi S, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016 Apr 20. [View Abstract]
  133. Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010 Aug 10. 28(23):3687-94. [View Abstract]
  134. Song M, Wu K, Meyerhardt JA, Ogino S, Wang M, Fuchs CS, et al. Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncol. 2017 Nov 2. [View Abstract]
  135. Davenport L. High Fiber Intake Tied to Improved Colon Cancer Survival. Medscape Medical News. Available at https://www.medscape.com/viewarticle/888006. November 3, 2017; Accessed: January 30, 2018.
  136. [Guideline] Meyerhardt JA, Mangu PB, Flynn PJ, Korde L, Loprinzi CL, Minsky BD, et al. Follow-Up Care, Surveillance Protocol, and Secondary Prevention Measures for Survivors of Colorectal Cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J Clin Oncol. 2013 Nov 12. [View Abstract]
  137. [Guideline] Labianca R, Nordlinger B, Beretta GD, Mosconi S, Mandalà M, Cervantes A, et al. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013 Oct. 24 Suppl 6:vi64-72. [View Abstract]
  138. Chustecka Z. Guidelines for Follow-up of Colorectal Cancer Patients. Medscape Medical News. Available at http://www.medscape.com/viewarticle/814359. Accessed: November 18, 2013.
  139. Kirkegaard H, Johnsen NF, Christensen J, Frederiksen K, Overvad K, Tjonneland A. Association of adherence to lifestyle recommendations and risk of colorectal cancer: a prospective Danish cohort study. BMJ. 2010 Oct 26. 341:c5504. [View Abstract]
  140. Meyerhardt JA, Heseltine D, Niedzwiecki D, Hollis D, Saltz LB, Mayer RJ, et al. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol. 2006 Aug 1. 24(22):3535-41. [View Abstract]
  141. Baron JA, Barry EL, Mott LA, Rees JR, Sandler RS, et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N Engl J Med. 2015 Oct 15. 373 (16):1519-30. [View Abstract]
  142. Barry EL, Peacock JL, Rees JR, Bostick RM, Robertson DJ, Bresalier RS, et al. Vitamin D Receptor Genotype, Vitamin D3 Supplementation, and Risk of Colorectal Adenomas: A Randomized Clinical Trial. JAMA Oncol. 2016 Dec 15. [View Abstract]
  143. Harrison P. Higher Vitamin D Levels Tied to Lower Colorectal Cancer Risk. Medscape Medical News. Available at https://www.medscape.com/viewarticle/898099. June 15, 2018; Accessed: June 19, 2018.
  144. McCullough ML, Zoltick ES, Weinstein SJ, Fedirko V, Wang M, et al. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. J Natl Cancer Inst. 2018 Jun 14. [View Abstract]
  145. Arber N, Spicak J, Rácz I, Zavoral M, Breazna A, Gerletti P, et al. Five-year analysis of the prevention of colorectal sporadic adenomatous polyps trial. Am J Gastroenterol. 2011 Jun. 106(6):1135-46. [View Abstract]
  146. Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 2007 May 12. 369(9573):1603-13. [View Abstract]
  147. Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J Natl Cancer Inst. 2009 Feb 18. 101(4):256-66. [View Abstract]
  148. Zhang X, Smith-Warner SA, Chan AT, et al. Aspirin Use, Body Mass Index, Physical Activity, Plasma C-Peptide, and Colon Cancer Risk in US Health Professionals. Am J Epidemiol. 2011 Aug 15. 174(4):459-67. [View Abstract]
  149. Nishihara R, Lochhead P, Kuchiba A, Jung S, Yamauchi M, Liao X, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013 Jun 26. 309(24):2563-71. [View Abstract]
  150. Cook NR, Lee IM, Zhang SM, Moorthy MV, Buring JE. Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial. Ann Intern Med. 2013 Jul 16. 159(2):77-85. [View Abstract]
  151. Meyskens FL Jr, McLaren CE, Pelot D, Fujikawa-Brooks S, Carpenter PM, Hawk E, et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev Res (Phila Pa). 2008 Jun. 1(1):32-8. [View Abstract]
  152. [Guideline] American Cancer Society Guideline for Colorectal Cancer Screening. American Cancer Society. Available at https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/acs-recommendations.html. May 30, 2018; Accessed: May 25, 2019.
  153. [Guideline] US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, et al. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2016 Jun 21. 315 (23):2564-75. [View Abstract]
  154. [Guideline] Wilt TJ, Harris RP, Qaseem A, High Value Care Task Force of the American College of Physicians. Screening for cancer: advice for high-value care from the American College of Physicians. Ann Intern Med. 2015 May 19. 162 (10):718-25. [View Abstract]
  155. [Guideline] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Colorectal Cancer Screening. NCCN. Available at http://www.nccn.org/professionals/physician_gls/pdf/colorectal_screening.pdf. Version 2.2017 — November 14, 2017; Accessed: January 30, 2018.
  156. [Guideline] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High Risk Assessment: Colorectal. NCCN. Available at http://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Version 1.2018 — October 3, 2017; Accessed: January 30, 2018.
  157. [Guideline] Rubenstein JH, Enns R, Heidelbaugh J, Barkun A, Clinical Guidelines Committee. American Gastroenterological Association Institute Guideline on the Diagnosis and Management of Lynch Syndrome. Gastroenterology. 2015 Sep. 149 (3):777-82; quiz e16-7. [View Abstract]
  158. [Guideline] Balmaña J, Balaguer F, Cervantes A, Arnold D, ESMO Guidelines Working Group. Familial risk-colorectal cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2013 Oct. 24 Suppl 6:vi73-80. [View Abstract]
  159. [Guideline] Stoffel EM, Mangu PB, Gruber SB, Hamilton SR, Kalady MF, Lau MW, et al. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines. J Clin Oncol. 2015 Jan 10. 33 (2):209-17. [View Abstract]
  160. [Guideline] Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW, et al. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015 Feb. 110 (2):223-62; quiz 263. [View Abstract]
  161. [Guideline] Rutter MD, East J, Rees CJ, Cripps N, Docherty J, Dolwani S, et al. British Society of Gastroenterology/Association of Coloproctology of Great Britain and Ireland/Public Health England post-polypectomy and post-colorectal cancer resection surveillance guidelines. Gut. 2020 Feb. 69 (2):201-223. [View Abstract]
  162. Church J, Simmang C, Standards Task Force, American Society of Colon and Rectal Surgeons, Collaborative Group of the Americas on Inherited Colorectal Cancer and the Standards Committee of The American Society of Colon and Rectal Surgeons. Practice parameters for the treatment of patients with dominantly inherited colorectal cancer (familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer). Dis Colon Rectum. 2003 Aug. 46 (8):1001-12. [View Abstract]
  163. Chang GJ, Kaiser AM, Mills S, Rafferty JF, Buie WD, Standards Practice Task Force of the American Society of Colon and Rectal Surgeons. Practice parameters for the management of colon cancer. Dis Colon Rectum. 2012 Aug. 55 (8):831-43. [View Abstract]
  164. [Guideline] Steele SR, Chang GJ, Hendren S, Weiser M, Irani J, Buie WD, et al. Practice Guideline for the Surveillance of Patients After Curative Treatment of Colon and Rectal Cancer. Dis Colon Rectum. 2015 Aug. 58 (8):713-25. [View Abstract]
  165. [Guideline] Kahi CJ, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, et al. Colonoscopy Surveillance After Colorectal Cancer Resection: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2016 Mar. 150 (3):758-768.e11. [View Abstract]
  166. [Guideline] Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A, et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Clin Oncol. 2016 Jan 10. 34 (2):179-85. [View Abstract]
  167. [Guideline] Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016 Aug. 27 (8):1386-422. [View Abstract]
  168. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004 Jan 15. 22(2):229-37. [View Abstract]
  169. Arkenau HT, Arnold D, Cassidy J, Diaz-Rubio E, Douillard JY, Hochster H, et al. Efficacy of oxaliplatin plus capecitabine or infusional fluorouracil/leucovorin in patients with metastatic colorectal cancer: a pooled analysis of randomized trials. J Clin Oncol. 2008 Dec 20. 26(36):5910-7. [View Abstract]
  170. Sehgal R, Lembersky BC, Rajasenan KK, et al. A Phase I/II Study of Capecitabine Given on a Week on/Week off Schedule Combined With Bevacizumab and Oxaliplatin for Patients With Untreated Advanced Colorectal Cancer. Clin Colorectal Cancer. 2011 Jun. 10(2):117-20. [View Abstract]
  171. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018 Mar 10. 36 (8):773-779. [View Abstract]
  172. Rozyltrek (entrectinib) [package insert]. South San Francisco, CA: Genentech USA, Inc. August, 2019. Available at
  173. Chustecka Z. Stop using calcium and magnesium with oxaliplatin. Medscape Medical News. Available at http://www.medscape.com/viewarticle/805232. June 3, 2013; Accessed: January 30, 2018.
  174. Chustecka Z. Bevacizumab’s indication extended in colorectal cancer. Medscape Medical News. Available at http://www.medscape.com/viewarticle/778116. January 24, 2013; Accessed: January 30, 2018.
  175. Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014 Apr 3. 370(14):1298-306. [View Abstract]
  176. Given Imaging Receives FDA Clearance for PillCam® COLON in Patients Following Incomplete Colonoscopy. Given Imaging. Available at http://www.givenimaging.com/en-us/Innovative-Solutions/Capsule-Endoscopy/pillcam-colon/Pages/COLON-Press-release.aspx. Accessed: January 27, 2016.
  177. Laidman J. Colonoscopy May Reduce Late-Stage Colon Cancer Risk by 70%. Medscape Medical News. Available at http://www.medscape.com/viewarticle/780259. March 04, 2013; Accessed: January 30, 2018.
  178. Nelson R. Begin Colorectal Cancer Screening at Age 45, Says ACS. Medscape Medical News. Available at https://www.medscape.com/viewarticle/897351. May 30, 2018; Accessed: May 30, 2018.
  179. American Cancer Society Updates Colorectal Cancer Screening Guideline. American Cancer Society. Available at https://www.cancer.org/latest-news/american-cancer-society-updates-colorectal-cancer-screening-guideline.html?utm_campaign&. May 30, 2018; Accessed: February 25, 2020.

Standard colectomies for adenocarcinoma of the colon.

Standard colectomies for adenocarcinoma of the colon.

Standard colectomies for adenocarcinoma of the colon.

Primary tumor (T)
TXPrimary tumor cannot be assessed
T0No evidence of primary tumor
TisCarcinoma in situ: intraepithelial or intramucosal carcinoma (involvement of lamina propria with no extension through the muscularis mucosa)
T1Tumor invades submucosa (through the muscularis mucosa but not into the muscularis propria)
T2Tumor invades muscularis propria
T3Tumor invades through the muscularis propria into the pericolorectal tissues
T4Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure
T4aTumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum)
T4bTumor directly invades or is adherent to other organs or structures
T SuffixDefinition
(m)Select if synchronous primary tumors are found in a single organ
Definition of Regional lymph nodes (N)
NXRegional lymph nodes cannot be assessed
N0No regional lymph node metastasis
N1Metastasis in 1-3 regional lymph nodes (tumor in lymph nodes measuring ≥0.2 mm) or any number of tumor deposits are present and all identifiable nodes are negative
N1aMetastasis in 1 regional lymph node
N1bMetastasis in 2-3 regional lymph nodes
N1cTumor deposit(s) in the subserosa, mesentery, or nonperitonealized, pericolic, or perirectal/mesorectal tissues without regional nodal metastasis
N2Metastasis in 4 or more lymph nodes
N2aMetastasis in 4-6 regional lymph nodes
N2bMetastasis in 7 or more regional lymph nodes
N SuffixDefinition
(sn)Select if regional lymph node metastasis identified by sentinel lymph node biopsy only
(f)Select if regional lymph node metastasis identified by fine needle aspiration or core needle biopsy
Definition of Distant metastasis (M)



The terms pM0 and Mx are not valid categories in the TNM system. Assignment of the M category for clinical classification may be cM0, cM1 or pM1. Any of the categories (cM0, CM1 or pM1) may be used with pathological stage grouping.



M CategoryM Criteria
cM0No distant metastasis by imaging or other studies, no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
cM1Metastasis to one or more distant sites or organs or peritoneal metastasis is identified
cM1aMetastasis confined to 1 organ or site is identified without peritoneal metastasis
cM1bMetastasis to two or more sites or organs is identified without peritoneal metastasis
M1cMetastasis to the peritoneal surface alone or with other site or organ metastases
pM1Metastasis to one or more distant sites or organs or peritoneal metastasis is identified and microscopically confirmed
pM1aMetastasis to one site or organ is identified without peritoneal metastasis and microscopically confirmed
pM1bMetastasis to two or more sites or organs is identified without peritoneal metastasis and microscopically confirmed.
pM1cMetastasis to the peritoneal surface is identified alone or with other site or organ metastasis and microscopically confirmed
0TisN0M0
IT1N0M0
 T2N0M0
IIAT3N0M0
IIBT4aN0M0
IICT4bN0M0
IIIAT1-T2N1/N1cM0
 T1N2aM0
IIIBT3-T4aN1/N1cM0
 T2-T3N2aM0
 T1-T2N2bM0
IIICT4aN2aM0
 T3-T4aN2bM0
 T4bN1-N2M0
IVAAny TAny NM1a
IVB



IVC



Any T



Any T



Any N



Any T



M1b



M1c



Parameter Organization
ESMO [JSMO](2013)ASCO (2013)NCCN (2016)
History and physical examEvery 3-6 mo for 3 y, then every 6 -12 mo at 4 and 5 yEvery 3-6 mo for 3 y, then every 6 mo to 5 yEvery 3-6 mo for 2 y, then every 6 mo to 5 y
CEAEvery 3-6 mo for 3 y, then every 6 -12 mo at 4 and 5 yEvery 3 mo for 3 y*Every 3-6 mo for 2 y, then every 6 mo to 5 y
Chest CT*Every 6-12 mo for first 3 yEvery 1 y for 3 yEvery 1 y for 5 y
Colonoscopy**At y 1 after surgery, and every 3-5 y thereafterAt 1 y, then every 5 y, dictated by the findings on the previous colonoscopyAt 1 y, 3 y, then every 5 y if negative
Abdominal CT*Every 6-12 mo for first 3 yEvery 1 y for 3 yEvery 6-12 mo for up to 5 y; scans to include chest and pelvis
ESMO = European Society of Medical Oncology; JSMO = Japanese Society of Medical Oncology; ASCO = American Society of Clinical Oncology; NCCN = National Comprehensive Cancer Network; CEA = carcinoembryonic antigen; CT = computed tomography



* For patients at high risk for recurrence (eg, lymphatic or venous invasion, or poorly differentiated tumors).



**Colonoscopy should be performed 3-6 mo postoperatively if preoperative colonoscopy was not done, due to an obstructing lesion; otherwise, colonoscopy in 1 y; if abnormal, repeat in 1 year; if no advanced adenoma (ie, villous polyp, polyp > 1 cm, or high-grade dysplasia), repeat in 3 y, then every 5 y.



Parameter Organization
ESMO (2013)[137] ASCO (2013)[136] NCCN  (2016)[93] ASCRS (2015)[164]
History and physical examEvery 3-6 mo for 3 y, then every 6 -12 mo at 4 and 5 yEvery 3-6 mo for 3 y, then every 6 mo to 5 yEvery 3-6 mo for 2 y, then every 6 mo to 5 yEvery 3-6 mo for 2 y, then every 6 mo to 5 y
CEAEvery 3-6 mo for 3 y, then every 6 -12 mo at 4 and 5 yEvery 3 mo for 3 y*Every 3-6 mo for 2 y, then every 6 mo to 5 yEvery 3-6 mo for 2 y, then every 6 mo to 5 y
Chest CT*Every 6-12 mo for first 3 yEvery 1 y for 3 yEvery 1 y for 5 yEvery 1 y for 5 y
Colonoscopy**At y 1 after surgery, and every 3-5 y thereafterAt 1 y, then every 5 y, dictated by the findings on the previous colonoscopyAt 1 y, 3 y, and 5 y if negativeAt y 1 after surgery, and every 3-5 y dictated by the findings on the first postoperative examination.
Abdominal CT*Every 6-12 mo for first 3 yEvery 1 y for 3 yEvery 1 y for 5 y; scans to include pelvisEvery 1 y for 5 y
ESMO = European Society of Medical Oncology; ASCO = American Society of Clinical Oncology; NCCN = National Comprehensive Cancer Network; American Society of Colon and Rectal Surgeons = ASCRS CEA = carcinoembryonic antigen; CT = computed tomography * For patients at high risk for recurrence (eg, lymphatic or venous invasion, or poorly differentiated tumors). **Colonoscopy should be performed 3-6 mo postoperatively if preoperative colonoscopy was not done, due to an obstructing lesion; otherwise, colonoscopy in 1 y; if abnormal, repeat in 1 year; if no advanced adenoma (ie, villous polyp, polyp >1 cm, or high-grade dysplasia), repeat in 3 y, then every 5 y.