Pediatric Malabsorption Syndromes

Back

Background

Malabsorption syndromes encompass numerous clinical entities that result in chronic diarrhea, abdominal distention, and failure to thrive.[1] Clinical malabsorption can be broken down into several distinct conditions, both congenital and acquired, that affect one or more of the different steps in the intestinal hydrolysis and subsequent transport of nutrients.

The major site of absorption is the small intestine, as depicted in the illustration below.



View Image

The small intestine is a major site of absorption.

Pathophysiology

Carbohydrate, fat, or protein malabsorption is caused by a disorder in the intestinal processes of digestion, transport, or both of these nutrients across the intestinal mucosa into the systemic circulation. Either a congenital abnormality in the digestive or absorptive processes or, more commonly, a secondarily acquired disorder of such processes may result in malabsorption.

Carbohydrates

Of the carbohydrates most commonly present in the diet (starches, sucrose, lactose), only starches require preliminary luminal digestion by salivary and, more importantly, pancreatic amylases. Despite the slow development of pancreatic amylase, whose secretion reaches adult levels during the end of the first year of life, cooked starch malabsorption is rare in infants because of the activity of the brush-border bound glucoamylase, an esoglycosidase that develops early in life.

The final products of amylase digestion include maltose, maltotriose, and higher residues of glucose polymers. The final hydrolysis of disaccharides and oligosaccharides occurs at the brush border of the enterocytes, where sucrase-isomaltase breaks down maltose, isomaltose (to glucose), and sucrose (to glucose and fructose); glucoamylase releases glucose from glucose polymers; and lactase splits lactose into glucose and galactose. Subsequent entry of the final monosaccharides (glucose, galactose, fructose) into the enterocytes through the brush border occurs via carrier molecules. Glucose and galactose share the same carrier, SGLT-1, which transports one molecule of the monosaccharide and one molecule of sodium (Na) in a secondarily active transport, energized by Na-activated and potassium (k)-activated adenosine triphosphatase (NaK ATPase). Instead, fructose is transported by Glut2 and Glut5 transporters across the cell membrane. Although Glut2 can transport both glucose and fructose, Glut5 is a fructose-specific transporter, working only down a concentration gradient (facilitated diffusion).

Disorders of these processes can be congenital (cystic fibrosis and Shwachman-Diamond syndrome, which may cause amylase deficiency; the extremely rare congenital lactase deficiency; glucose-galactose malabsorption; sucrase-isomaltase deficiency; adult-type hypolactasia) or acquired: the most common being lactose intolerance, typically secondary to a damage of the mucosa, such as a viral enteritis or conditions that cause mucosal atrophy, such as celiac disease.

Protein

Proteins are first digested in the stomach, where pepsinogens, which are activated to pepsins by a pH of less than 4, hydrolyze them in large molecular weight peptides. Upon entering the duodenum, the pancreatic proteases (activated by trypsin, secreted by the pancreas as a proenzyme, trypsinogen, which is subsequently activated by the brush border–bound enterokinase) further split them into low molecular weight peptides and free amino acids.

Interestingly, the final breakdown products of intraluminal digestion of protein are composed of low molecular weight peptides (2-6 amino acid residues) for 70% and of free amino acids for 30%. Subsequently, brush border–bound peptidases further hydrolyze peptides to release a mixture of free amino acids and small peptides (2-3 amino acid residues). Finally, free amino acids are taken up by enterocytes through specific Na-linked carrier systems (5 carriers with selective affinities for groups of amino acids are described), whereas dipeptides and tripeptides are translocated into the absorptive epithelial cells by the peptide transporter 1 (PEPT1), which is a carrier with a broad specificity linked to H entry.[2]  In the first few months of life, the latter system is much more active than those that transport amino acids and is thought to play a bigger physiological role.

Congenital disorders of protein digestion include conditions such as cystic fibrosis, Shwachman-Diamond syndrome, and enterokinase deficiency, which cause inadequate intraluminal digestion. No congenital defects have been described in any of the brush border–bound peptidases or in the peptide carrier.

Acquired disorders of protein digestion and/or absorption are nonspecific (ie, they also affect the absorption of carbohydrates and lipids) and are found in conditions that result in damage to the absorptive intestinal surface, such as extensive viral enteritis, milk protein allergy enteropathy, and celiac disease.

Lipids

A lingual lipase is responsible for the first partial hydrolysis of triglycerides; this enzyme becomes active in persons with low gastric pH levels and is active even in premature infants. However, the largest part of triglyceride digestion is accomplished in the duodenojejunal lumen because of a complex of pancreatic enzymes, the most important of which is the lipase-colipase complex. Like amylase, these enzymes also develop slowly, and this accounts for the known low capacity of babies to absorb lipids, termed physiologic steatorrhea of the newborn. Additionally, adequate concentrations of intraluminal conjugated bile salts are needed to form micelles, and the secretion of bile acids may also be partially inadequate in very young patients.

Disorders of these processes can be congenital (cystic fibrosis and Shwachman-Diamond syndrome, which cause lipase and colipase deficiency; the uncommon isolated deficiency of lipase and colipase; the extremely rare congenital primary bile acid malabsorption, which results in low bile acids concentrations) or acquired (secondary mostly to disorders of the liver and the biliary tract or to chronic pancreatitis). Clearly, any condition that results in the loss of small intestinal absorptive surface also causes steatorrhea.

Epidemiology

Frequency

Genetically determined syndromes

The prevalence of celiac disease in the United States is around 1% of the general population[3] and has increased over time.[4] Celiac disease in its entirety (ie, including the forms without overt malabsorption) is by far the most common inherited malabsorption syndrome. Cystic fibrosis is the second most common malabsorption syndrome. Other congenital disorders are rare, with the exception of adult-type hypolactasia, which has a prevalence that varies greatly among different ethnic groups.

Acquired syndromes

Cow's milk and soy milk protein allergies are common, especially in infants and young children.[5] The prevalence of milk protein allergy, of which enteropathy is one of the presenting clinical symptoms, is estimated to be around 3%. A transient and common form of malabsorption in infants results from acute-onset enteritis (mostly viral, specifically rotaviral), which causes transient lactose intolerance. Although toddler's (or unspecific) diarrhea accounts for approximately 7.5% of referrals to pediatric gastroenterologists, it should not be considered a malabsorption syndrome because, by definition, no digestive or absorptive processes are impaired.

Secondary malabsorption syndromes that result from liver, pancreas, and intestinal diseases are uncommon. The manifestations vary according to the severity of each disease and the extent of intestinal mucosal injury.

Mortality/Morbidity

Although the morbidity can be severe, and aside from the single entity of cystic fibrosis, common malabsorption syndromes carry low mortality rates. Neonates and young infants, especially those with signs of malnutrition, are particularly at risk. In many of the congenital syndromes, morbidity varies with the particular syndrome and may be associated with systemic manifestations of the disease.

Race

Congenital sucrase-isomaltase deficiency is most common in Canadian Eskimos and natives of Greenland. Deficiency of trehalose, a sugar found almost exclusively in mushrooms, is rare, except in natives of Greenland. Adult-onset lactase deficiency is most common in persons of Asian, African, and Mediterranean descent.

Sex

Celiac disease is slightly more common in females. Autoimmune enteropathy is an X-linked disorder that only affects males in familial cases.

Age

Neonates and young infants with malabsorption syndromes are at particularly high risk for chronic diarrhea and malnutrition. Symptoms of a congenital disease are usually apparent shortly after birth (the exception being adult-onset lactase deficiency, which appears only after age 6-8 y) or after a short hiatus once a particular substance is ingested in substantial amounts. Protein sensitivity syndromes to milk or soy protein usually present in infants younger than 3 months, but solid food protein sensitivity syndromes are also known to occur in older patients.

History

The following are important to assess in patients with possible malabsorption syndromes:

Physical

In the absence of GI tract symptoms, malabsorption syndromes should be considered during the workup for failure to thrive, malnutrition, poor weight gain, or delayed puberty. Signs of malnutrition discovered during physical examination, such as reduced muscle and fat mass, atrophic tongue changes, or enlarged liver or spleen, have been reported in children with chronic malabsorption. Malabsorption syndromes should be suspected in infants with weight loss or little weight gain since birth and in infants with low weight and weight-for-height percentiles. By definition, toddler's diarrhea does not cause failure to thrive, unless anxious parents intervene by imposing unnecessary dietary restrictions that result in lower caloric intake.

Dehydration caused by a diarrhea that is induced by a malabsorption syndrome is not common, but, when it occurs, dehydration can cause serious morbidity and mortality. Assess each patient for signs, symptoms, and severity of dehydration. Lethargy, depressed consciousness, sunken anterior fontanel, dry mucous membranes, sunken eyes, poor skin turgor, and delayed capillary refill are all signs of dehydration.

Borborygmi, a significant increase in peristaltic activity, can be detected audibly and with tactile palpation. This is associated with decreased intestinal transient time.

Large numbers of stools result in a constant wet diaper in young children. Failure to properly dry the buttocks and perianal area results in erythema, skin irritation, and skin breakdown, with evidence of bleeding seen in the diaper or in stool.

Protein sensitivity may be associated with an eczematous rash.

Causes

Causes include the following:

Carbohydrate malabsorption

Starch molecules are primarily digested by salivary and pancreatic amylase, but glucoamylase in the intestinal brush boarder also assists in digestion.

Pancreatic insufficiency impedes the digestion of large starch molecules.

Absence or reduction of the brush border disaccharidases causes selective carbohydrate malabsorption.

Transient reduction of these enzymes is common after an infection in the intestine, particularly a viral infection, because intestinal villi and microvilli may be damaged.

Glucoamylase and maltase are most resistant to the depleting effects of mucosal injury that result from infection, whereas lactase is the most sensitive because of its predominant distribution near the tips of the villi.

Lack of sucrase and isomaltase is, by far, the most frequent congenital enzyme deficiency. This enzyme deficiency is inherited in an autosomal recessive manner.

Congenital lactase deficiency is exceedingly rare, but adult-type lactase deficiency (also called adult-type hypolactasia) is very common in some ethnic groups.

A congenital deficiency in the glucose galactose transporter (SGLT-1) is inherited in an autosomal recessive manner.

Take care when diagnosing lactose or another complex carbohydrate intolerance because many complex carbohydrates are broken down into glucose.

Small bowel bacterial overgrowth of normal flora alters the intraluminal metabolism of carbohydrates and results in their malabsorption. This entity should also be suspected in children with diarrhea-predominant irritable bowel syndrome.[7] Bacteria ferment carbohydrates into smaller osmotically active molecules and organic acids. Increased osmolarity causes fluid from systemic circulation to enter the intestinal lumen, resulting in diarrhea. Organic acids stimulate motility and may directly injure the intestinal mucosa. Fermentation eliminates the reducing substances and lowers the pH of the stool. The production of lactate and short-chain fatty acids in the human colon can result in systemic acidosis. In particular, a syndrome of D-lactic acidosis may develop when specific bacteria that are capable of producing this uncommon and poorly cleared D isomer of lactate exist in the intestinal flora.

Bile acids are usually recycled by enterohepatic circulation. Many factors can prevent this recirculation. Bacterial overgrowth of normal flora and growth of abnormal flora are the most common causes of altered intraluminal metabolism of bile acids. Anaerobes and Staphylococcus aureus deconjugate bile acids, which impedes their active reabsorption by the terminal ileum into the portal circulation for reuptake by the liver. A congenital deficiency in the sodium–bile acid cotransporter results in primary bile acid malabsorption. The resulting diminished transport of bile acids from the intestinal lumen allows intestinal flora to deconjugate bile acids.

Deconjugated bile acids directly inhibit the carbohydrate transporters, reduce intraluminal pH levels, and damage the enterocyte. They may also directly stimulate the colon to secrete fluid, contributing to diarrhea.

Fat malabsorption

Increased delivery of fat to the colon results in diarrhea and soft, pasty, foul-smelling stools. However, the gas causes stools to float. Consequences include the malabsorption of fat-soluble vitamins A, D, E, and K and insufficient energy intake due to the high energy value of dietary lipids.

Exocrine pancreatic insufficiency is the principal condition that results in severe fat malabsorption.[8]  Pancreatitis, pancreatic cancer, pancreatic resection, cystic fibrosis, Shwachman-Diamond syndrome, Johnson-Blizzard syndrome, and Pearson syndrome can all result in pancreatic insufficiency. Significant obstructive biliary or cholestatic liver disease or extensive intestinal mucosal disease, such as occurs in celiac disease, may also result in severe steatorrhea.

Impaired bile production or secretion is seen in liver or biliary tract disease. Inflammation or resection of the ileum impedes enterohepatic circulation, which results in a reduced bile acid pool. Bacterial overgrowth in the small bowel deconjugates bile acids, thereby inactivating their ability to help lipids form a micelle. These syndromes result in moderate lipid malabsorption.

Abetalipoproteinemia is a rare disorder with autosomal recessive inheritance. Absence of the lipoproteins results in cytoplasmic lipid accumulation in the enterocyte. Lymphatic transport of long-chain fats is impaired in patients with abetalipoproteinemia, lymphangiectasia, and protein-losing enteropathy, resulting in moderate fat malabsorption.

Protein malabsorption

Protein malabsorption is a fairly common result of exocrine pancreatic enzyme deficiency, as occurs in patients with cystic fibrosis.

Protein malabsorption that results from congenital enterokinase deficiency is well-described but rare.

Creatorrhea, loss of protein in the stool (ie, protein-losing enteropathy), is often caused by the leakage of protein from the serum due to inflammation of the mucosa, as in Crohn disease, celiac disease, and protein sensitivity syndromes. Congenital lymphangiectasia, a developmental disorder in which dilation and dysfunction of intestinal lymphatics occurs, often in association with limb edema (Milroy disease), may present with severe protein-losing enteropathy without mucosal injury.

Vitamin malabsorption

Malabsorption of vitamin B-12 and folate is associated with tropical spruce, a disorder that is acquired after travel to tropical areas.

Vitamin B-12 is absorbed in the ileum, and absorption requires an intrinsic factor made in the gastric parietal cell. Intrinsic factor deficiency that results from atrophic gastritis or absence (from resection) or disease of the terminal ileum (the predominant site of active B-12) results in vitamin B-12 malabsorption.

Laboratory Studies

The following laboratory studies are indicated in malabsorption syndromes:

Imaging Studies

Although upper GI radiography with small bowel follow-through demonstrates a pattern of thickened folds and increased fluid content in the jejunal loops in celiac disease and conditions characterized by protein-losing enteropathies, this test is no longer used because it is unspecific and not sensitive enough, especially when compared with other diagnostic tests.

Procedures

Procedures include the following:

Histologic Findings

Biopsy of the small intestine remains the criterion standard for the diagnosis of celiac disease.

The classic features include villous atrophy, infiltration of the epithelium by cytotoxic intraepithelial T lymphocytes, and crypt hyperplasia. However, the spectrum can range from a simple intraepithelial lymphocytosis without villous blunting or crypt hyperplasia to total villous atrophy with severe crypt hyperplasia.

Medical Care

Clearly, treatment of malabsorption syndromes depends on the specific entity being considered and thus widely varies. Although several new possibilities of gluten predigestion and detoxification and ways of increasing intestinal barrier tightness to gluten penetration are currently under active investigation and offer promising results, the only current therapeutic option for celiac disease remains the gluten-free diet, which is a diet completely devoid of wheat, barley, and rye (see Celiac Disease).[15, 16]

Chronic diarrhea due to proximal small bowel bacterial overgrowth is treated with oral broad-spectrum antibiotics, particularly those with anaerobic coverage (eg, metronidazole).[17] More recently, rifaximin has also been found to be very effective in adults.[18] Because this entity often occurs in individuals who have an anatomic or functional predisposition (eg, short gut, motility disorders), repeated courses are typically needed.

Malabsorption secondary to short gut needs to be aggressively treated, and pharmacological options are now available.[19]

In children with chronic diarrhea secondary to bile acid malabsorption, the use of cholestyramine (Questran) to bind bile acids may help to reduce the duration and severity of the diarrhea.

Any loss of pancreatic enzymes can be replaced with oral supplements.

Immunosuppressive medications can be used to control autoimmune enteropathy and should be prescribed only by a specialist.

Children with malabsorption secondary to food allergic enteropathy need to be on an elimination diet, avoiding offending food antigens. Their identification is often the result of empiric trials because food allergic enteropathies cannot be diagnosed by immunoglobulin E (IgE) measurement, either by radioallergosorbent assay test (RAST) or skin prick tests.

Surgical Care

Most children with short gut syndrome are eventually weaned off parenteral nutrition and do not require surgery. However, in some children, disease is refractory to enteral feeding, and other children develop end-stage liver disease from the prolonged supplementation of parenteral nutrition. Consider liver, gut, or multivisceral transplantation in these children.

Consultations

In children in whom a malabsorption syndrome is suspected to cause growth failure or is associated with high morbidity, prompt referral to a pediatric gastroenterologist is recommended.

Diet

Dietary concerns include the following:

Pancrelipase (Ultrase, Pancrease, Creon)

Clinical Context:  Assists in digestion of protein, starch, and fat. Contains lipase, protease, and amylase.

Class Summary

Pancreatic enzyme deficiency may occur because of steatorrhea secondary to malabsorption.

Cholestyramine (Questran)

Clinical Context:  Binds bile acids, thus reducing damage to the intestinal mucosa. Also reduces induction of colonic fluid secretion. Forms a nonabsorbable complex with bile acids in the intestine, which in turn inhibits enterohepatic reuptake of intestinal bile salts.

Class Summary

These agents are used in combination with antibiotics for bile acid malabsorption syndromes. Bacteria overgrowth may cause diarrhea by deconjugation and dehydroxylation of bile acids. Primary bile acid malabsorption may also occur.

Metronidazole (Flagyl)

Clinical Context:  DOC for documented small bowel bacterial overgrowth. Provides good anaerobic coverage.

Rifaximin (Xifaxan)

Clinical Context:  Nonabsorbed (< 0.4%), broad-spectrum antibiotic specific for enteric pathogens of the gastrointestinal tract (ie, Gram-positive, Gram-negative, aerobic and anaerobic). Rifampin structural analog. Binds to beta-subunit of bacterial DNA-dependent RNA polymerase, thereby inhibiting RNA synthesis. Indicated for E coli (enterotoxigenic and enteroaggregative strains) associated with travelers' diarrhea.

Class Summary

Metronidazole may be considered and provides anaerobic coverage. Although the use of rifaximin in children for the indication of small intestinal bacterial overgrowth is not US Food and Drug Administration (FDA)-approved, this antibiotic is virtually nonabsorbed (< 0.4%) and has been proven useful in the treatment of small intestinal bacterial overgrowth in adults.

Further Outpatient Care

Strict follow-up monitoring with the primary care pediatrician is necessary to reevaluate diet therapy efficacy and compliance.

Further Inpatient Care

If a patient with a malabsorption syndrome shows any symptoms of dehydration or malnutrition, admit the patient to a medical care facility and immediately initiate treatment with parenteral fluid and nutrition supplements.

Treatment for severe acquired carbohydrate malabsorption requires admission to a medical care facility for enteral nutrition with a low-carbohydrate formula and administration of parenteral dextrose.

Deterrence/Prevention

The availability of sensitive and specific serological testing for celiac disease, namely the antitissue transglutaminase and the newer antideamidated gliadin peptides antibodies, allows the screening of first-degree relatives of patients, in whom the prevalence of celiac disease is higher.[20]

Asymptomatic subjects with positive results and celiac disease that is eventually confirmed by biopsy findings can then initiate a gluten-free diet, thus preventing all malabsorptive symptoms.

Prognosis

Mucosal atrophy caused by infectious gastroenteritis, food-sensitivity enteropathies, or malnutrition can result in an 80% reduction of intestinal surface area. Once the causative agent is removed, the repair of the small bowel is usually rapid (4-6 days). In some patients, repair may be slow, and after 2 months, the villi surface area is 63% normal and the microvillous surface area is only 38% normal.

Some malabsorption syndromes are transient, whereas others simply require a change in diet. Most disorders that cause secondary malabsorption are progressive and, because of systemic complications, result in a limited lifespan in patients. For example, patients with abetalipoproteinemia can die in early adulthood because of cardiac abnormalities, whereas patients with severe autoimmune enteropathies or microvillus inclusion disease have a very poor prognosis without intestinal transplantation.

Outcome in patients with short gut syndrome varies. The long-term prognosis depends primarily on the amount of time parenteral nutrition is required. The complications of parenteral nutrition and the lack of trophic stimulation of intestinal mucosal growth impede recovery. Delayed intestinal autonomy depends on the characteristics of the residual intestine length, presence of the ileocecal valve and colon, and motor function. Bacterial overgrowth compromises intestinal adaptation and increases the risk of liver disorders.

Author

Stefano Guandalini, MD, Founder and Medical Director, Celiac Disease Center, Chief, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Chicago Medical Center; Professor, Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Division of the Biological Sciences, The Pritzker School of Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Catherine D Newland, MD, Pediatric Gastroenterology Fellow, Comer Children’s Hospital, University of Chicago

Disclosure: Nothing to disclose.

M Akram Tamer, MD, Professor, Program Director, Department of Pediatrics, University of Miami, Leonard M Miller School of Medicine

Disclosure: Nothing to disclose.

Richard E Frye, MD, PhD, Professor of Child Health, University of Arizona College of Medicine at Phoenix; Chief of Neurodevelopmental Disorders, Director of Autism and Down Syndrome and Fragile X Programs, Barrow Neurological Institute at Phoenix Children's Hospital

Disclosure: Nothing to disclose.

Specialty Editors

Mary L Windle, PharmD, Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

B UK Li, MD, Professor of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin; Attending Gastroenterologist, Director, Cyclic Vomiting Program, Children’s Hospital of Wisconsin

Disclosure: Nothing to disclose.

Chief Editor

Carmen Cuffari, MD, Associate Professor, Department of Pediatrics, Division of Gastroenterology/Nutrition, Johns Hopkins University School of Medicine

Disclosure: Received honoraria from Prometheus Laboratories for speaking and teaching; Received honoraria from Abbott Nutritionals for speaking and teaching. for: Abbott Nutritional, Abbvie, speakers' bureau.

Additional Contributors

Eric S Maller, MD,

Disclosure: Nothing to disclose.

References

  1. Siddiqui Z, Osayande AS. Selected disorders of malabsorption. Prim Care. 2011 Sep. 38(3):395-414; vii. [View Abstract]
  2. Ma K, Hu Y, Smith DE. Peptide transporter 1 is responsible for intestinal uptake of the dipeptide glycylsarcosine: studies in everted jejunal rings from wild-type and Pept1 null mice. J Pharm Sci. 2011 Feb. 100 (2):767-74. [View Abstract]
  3. Fasano A, Berti I, Gerarduzzi T, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med. 2003 Feb 10. 163(3):286-92. [View Abstract]
  4. Rubio-Tapia A, Kyle RA, Kaplan EL, et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology. 2009 Jul. 137(1):88-93. [View Abstract]
  5. Meyer R, Venter C, Fox AT, Shah N. Practical dietary management of protein energy malnutrition in young children with cow's milk protein allergy. Pediatr Allergy Immunol. 2012 Mar 22. [View Abstract]
  6. Abenavoli L, Proietti I, Vonghia L, et al. Intestinal malabsorption and skin diseases. Dig Dis. 2008. 26(2):167-74. [View Abstract]
  7. Scarpellini E, Giorgio V, Gabrielli M, et al. Prevalence of small intestinal bacterial overgrowth in children with irritable bowel syndrome: a case-control study. J Pediatr. 2009 Sep. 155(3):416-20. [View Abstract]
  8. Bruno MJ, Haverkort EB, Tytgat GN, van Leeuwen DJ. Maldigestion associated with exocrine pancreatic insufficiency: implications of gastrointestinal physiology and properties of enzyme preparations for a cause-related and patient-tailored treatment. Am J Gastroenterol. 1995 Sep. 90(9):1383-93. [View Abstract]
  9. Ford GA, Preece JD, Davies IH, Wilkinson SP. Use of the SeHCAT test in the investigation of diarrhoea. Postgrad Med J. 1992 Apr. 68(798):272-6. [View Abstract]
  10. Wedlake L, A'Hern R, Russell D, Thomas K, Walters JR, Andreyev HJ. Systematic review: the prevalence of idiopathic bile acid malabsorption as diagnosed by SeHCAT scanning in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2009 Oct. 30(7):707-17. [View Abstract]
  11. Mokrowiecka A, Daniel P, Slomka M, Majak P, Malecka-Panas E. Clinical utility of serological markers in inflammatory bowel disease. Hepatogastroenterology. 2009 Jan-Feb. 56(89):162-6. [View Abstract]
  12. Ritchie BK, Brewster DR, Davidson GP, Tran CD, McNeil Y, Hawkes JS. 13C-sucrose breath test: novel use of a noninvasive biomarker of environmental gut health. Pediatrics. 2009 Aug. 124(2):620-6. [View Abstract]
  13. Yao CK, Tuck CJ. The clinical value of breath hydrogen testing. J Gastroenterol Hepatol. 2017 Mar. 32 Suppl 1:20-22. [View Abstract]
  14. Gabrielli M, D'angelo G, Di Rienzo T, Scarpellini E, Ojetti V. Diagnosis of small intestinal bacterial overgrowth in the clinical practice. Eur Rev Med Pharmacol Sci. 2013 Dec. 17 Suppl 2:30-5. [View Abstract]
  15. Rizzello CG, De Angelis M, Di Cagno R, et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol. 2007 Jul. 73(14):4499-507. [View Abstract]
  16. [Guideline] Hill ID, Dirks MH, Liptak GS, et al. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2005 Jan. 40(1):1-19. [View Abstract]
  17. Quigley EM, Quera R. Small intestinal bacterial overgrowth: roles of antibiotics, prebiotics, and probiotics. Gastroenterology. 2006. 130:S78-90. [View Abstract]
  18. Lauritano EC, Gabrielli M, Scarpellini E, et al. Antibiotic therapy in small intestinal bacterial overgrowth: rifaximin versus metronidazole. Eur Rev Med Pharmacol Sci. 2009 Mar-Apr. 13(2):111-6. [View Abstract]
  19. Kumpf VJ. Pharmacologic Management of Diarrhea in Patients With Short Bowel Syndrome. JPEN J Parenter Enteral Nutr. 2014 Jan 24. [View Abstract]
  20. Volta U, Granito A, Fiorini E, et al. Usefulness of antibodies to deamidated gliadin peptides in celiac disease diagnosis and follow-up. Dig Dis Sci. 2008 Jun. 53(6):1582-8. [View Abstract]
  21. Adachi JA, DuPont HL. Rifaximin: a novel nonabsorbed rifamycin for gastrointestinal disorders. Clin Infect Dis. 2006 Feb 15. 42(4):541-7. [View Abstract]
  22. Cavataio F, Guandalini S. Cow's milk allergy. Guandalini S, ed. Essential Pediatric Gastroenterology. McGraw-Hill; 2005. 175-92.
  23. Cole CR, Ziegler TR. Small bowel bacterial overgrowth: a negative factor in gut adaptation in pediatric SBS. Curr Gastroenterol Rep. 2007 Dec. 9(6):456-62. [View Abstract]
  24. Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 2008 Jun. 27(3):328-39. [View Abstract]
  25. Fonnesu C, Giovinale M, Verrecchia E, et al. Gastrointestinal amyloidosis: a case of chronic diarrhoea. Eur Rev Med Pharmacol Sci. 2009 Mar. 13 Suppl 1:45-50. [View Abstract]
  26. Goulet O, Ruemmele F. Causes and management of intestinal failure in children. Gastroenterology. 2006. 130 (2 Suppl 1):S16-28. [View Abstract]
  27. Green PH, Jabri B. Celiac disease. Annu Rev Med. 2006. 57:207-21. [View Abstract]
  28. Guandalini S, Dincer AP. Nutritional management in diarrhoeal disease. Baillieres Clin Gastroenterol. 1998. 12:697-717. [View Abstract]
  29. Gupte GL, Beath SV, Kelly DA, et al. Current issues in the management of intestinal failure. Arch Dis Child. 2006. 91:259-64. [View Abstract]
  30. Kneepkens CM, Hoekstra JH. Chronic nonspecific diarrhea of childhood: pathophysiology and management. Pediatr Clin North Am. 1996 Apr. 43(2):375-90. [View Abstract]
  31. Longo N, Elsas LJ. Human glucose transporters. Adv Pediatr. 1998. 45:293-313. [View Abstract]
  32. Love MW, Dawson PA. New insights into bile acid transport. Curr Opin Lipidol. 1998 Jun. 9(3):225-9. [View Abstract]
  33. Maldonado J, Gil A, Narbona E, Molina JA. Special formulas in infant nutrition: a review. Early Hum Dev. 1998 Dec. 53 Suppl:S23-32. [View Abstract]
  34. Montalto M, Curigliano V, Santoro L, et al. Management and treatment of lactose malabsorption. World J Gastroenterol. 2006. 12:187-91. [View Abstract]
  35. Montalto M, Santoro L, D'Onofrio F, Curigliano V, Visca D, Gallo A, et al. Classification of malabsorption syndromes. Dig Dis. 2008. 26(2):104-11. [View Abstract]
  36. Nakamura T, Takeuchi T, Tando Y. Pancreatic dysfunction and treatment options. Pancreas. 1998 Apr. 16(3):329-36. [View Abstract]
  37. Robayo-Torres CC, Quezada-Calvillo R, Nichols BL. Disaccharide digestion: clinical and molecular aspects. Clin Gastroenterol Hepatol. 2006. 4:276-87. [View Abstract]
  38. Vignes S, Bellanger J. Primary intestinal lymphangiectasia (Waldmann''s disease). Orphanet J Rare Dis. 2008 Feb 22. 3:5. [View Abstract]
  39. Weiss B, Skourikhin Y, Modan-Moses D, Broide E, Fradkin A, Bujanover Y. Is adult height of patients with celiac disease influenced by delayed diagnosis?. Am J Gastroenterol. 2008 Jul. 103(7):1770-4. [View Abstract]
  40. Zanchi C, Di Leo G, Ronfani L, Martelossi S, Not T, Ventura A. Bone metabolism in celiac disease. J Pediatr. 2008 Aug. 153(2):262-5. [View Abstract]
  41. Antunes C, Gossman WG. Whipple Disease. 2017 Jun. [View Abstract]
  42. Tack GJ, van de Water JM, Bruins MJ, Kooy-Winkelaar EM, van Bergen J, Bonnet P, et al. Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol. 2013 Sep 21. 19 (35):5837-47. [View Abstract]
  43. Syage JA, Murray JA, Green PHR, Khosla C. Latiglutenase Improves Symptoms in Seropositive Celiac Disease Patients While on a Gluten-Free Diet. Dig Dis Sci. 2017 Jul 28. [View Abstract]
  44. Goel G, King T, Daveson AJ, Andrews JM, Krishnarajah J, Krause R, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol Hepatol. 2017 Jul. 2 (7):479-493. [View Abstract]

The small intestine is a major site of absorption.

The small intestine is a major site of absorption.