Cannabinoid Poisoning

Back

Background

Marijuana (leaves, stems, seeds) is derived from the hemp plants Canniabis sativa or Cannabis indica. The term marijuana became popular in the 1930s; it was originally a slang word for the psychoactive part of cannabis smoked by Mexican soldiers. Hemp refers to the roots, stalk, and stems of the plant, which can be used to make rope and twine.

The most potent form of this plant's extracts is hash oil, a liquid. The dried resins are referred to as "hashish". The dried flowering tops and leaves can be smoked as a cigarette, known colloquially as a "joint," in water pipes or “bongs.' Both the plant material and the hash oil may be inhaled using a vaporizer, which volatilizes the active compounds by heating them without combustion. These forms may also be ingested. This plant has been used for several thousands of years both recreationally and medicinally. See the image below.



View Image

Flowering top of cannabis plant.

More than 400 active compounds have been isolated from the cannabis plant. Sixty active compounds are unique to the plant and are collectively known as cannabinoids. Delta-9-tetrahydrocannanbinol (THC) is the most psychoactive cannabinoid, producing euphoria, relaxation, intensification of ordinary sensory experiences, perceptual alterations, diminished pain, and difficulties with memory and concentration. Cannabidiol, (CBD), is another cannabinoid that acts as an antagonist of the endocannabinoid system. It has been studied as a potential therapeutic agent for severe epilepsy. 

Acute cannabis toxicity results in difficulty with coordination, decreased muscle strength, decreased hand steadiness, postural hypotension, lethargy, decreased concentration, slowed reaction time, slurred speech, and conjunctival injection. Large doses of THC may produce confusion, amnesia, delusions, hallucinations, anxiety, and agitation, but most episodes remit rapidly. Long-term users may experience paranoia, panic disorder, fear, or dysphoria.

The relationship of cannabis to other drugs of abuse is described in two conflicting models. The "gateway" theory of the development of abuse describes the escalation of drug use from adolescence to adulthood. According to this theory, a person will progress from legal drugs, such as alcohol and cigarettes, to illicit drugs, such as marijuana.[1]

In contrast, the common liability to addiction (CLA) model posits that a set of set of factors (which may include psychological characteristics, social environment, and genetic tendencies) is associated with risk for all types of substance use disorders. In this model, which is supported by increasing evidence, a sequence of use can start with any substance, legal or illegal.[2]

Pathophysiology

 The most potent cannabinoid, THC, was isolated in the 1960s. Nearly 3 decades later, in the early 1990s, the specific cannabinoid receptors were discovered, CB1 (or Cnr1) and CB2 (or Cnr2).

The CB1 receptors are predominantly located in the brain, with a wide distribution. The highest densities are found in the frontal cerebral cortex (higher functioning), hippocampus (memory, cognition), basal ganglion and cerebellum (movement), and striatum (brain reward). Other brain regions in which the CB1 receptors are found include areas responsible for anxiety, pain, sensory perception, motor coordination, and endocrine function. This distribution is consistent with the clinical effects elicited by cannabinoids.

The CB2 receptor, on the other hand, is located peripherally. Specifically, it is involved in the immune system (splenic macrophages, T and B lymphocytes), peripheral nerves, and the vas deferens.

Both the CB1 and CB2 receptors inhibit adenylate cyclase and stimulate potassium channels. As a result, the CB1 receptors inhibit the release of several neurotransmitters, including acetylcholine, glutamate, norepinephrine, dopamine, serotonin, and gamma–aminobutyric acid (GABA). CB2 receptor signaling is involved in immune and inflammatory reactions.

Potency

In recent decades, the average THC potency of cannabis has increased due to more sophisticated plant breeding and cultivation.[3] In the 1970s, the average marijuana cigarette contained approximately 10 mg of THC. Currently, a comparable cigarette contains 60-150 mg. Because the effects of THC are dose dependent, modern cannabis users may experience greater morbidity than their predecessors.

Cannabis is available in several forms. Marijuana is a combination of the cannabis flowering tops and leaves. The THC content is 0.5-5%. Two preparations are possible:

Hashish is dried resin collected from the flowering tops. The THC concentration is 2-20%. Hash oil is a liquid extract; it contains 15% THC.

Sinsemilla is unpollinated flowering tops from the female plant. THC content is as high as 20%. Dutch hemp (Netherweed) has a THC concentration as high as 20%.

Absorption

The route of administration determines the absorption of the cannabis product, as follows:

Behavioral effects

THC most commonly produces euphoria, or a "high," including feelings of intoxication and detachment, relaxation, altered perception of time and distance, intensified sensory experiences, laughter, talkativeness, decreased anxiety, decreased alertness, and depression. These effects depend on the dose, expectations of the user, mode of administration, social environment, and personality.

THC triggers dopaminergic neurons in the ventral tegmental area of the brain, a region known to mediate the reinforcing (rewarding) effects. This dopaminergic drive is thought to underlie the reinforcing and addicting properties of this drug.

Dysphoric reactions to cannabis are not uncommon, especially in naive users. Reactions can include severe anxiety or panic, unpleasant somatic sensations, delirium, mania, or paranoia. Anxiety and/or panic are the most common reactions; they are of sudden onset during or shortly after smoking, or they can appear more gradually 1-2 hours after an oral dose. These effects often occur in those who unwittingly consume marijuana (eg. those ingesting baked goods that they did not know contained marijuana). Cannabidiol may mitigate the adverse psychiatric effects of THC. These anxiety/panic reactions usually resolve without intervention.

Although flashbacks, in which the original drug experience (usually dysphoria) is relived weeks or months after use., have been reported, they are uncommon. 

Mental effects

Short-term memory is impaired even after small doses in both naive and experienced users. The deficits appear to be in acquisition of memory, which may result from an attentional deficit, combined with the inability to filter out irrelevant information and the intrusion of extraneous thoughts.

Chronic use can be associated with subtle impairment in cognitive function, which is dependent on dose and duration of use. At present, most of the available data indicate that these cognitive deficits are reversible after more than a week of abstinence.

Immune system effects

Based on extrapolation from in vitro data, cannabis use may impair the immune system's ability to fight off microbial and viral infection. In a dose-dependent fashion, lung macrophage functions, including phagocytosis, migration, and cytokine production, appear to be compromised by cannabis use in vitro. Although cannabinoid receptors are found on human T and B lymphocytes, to date, no conclusive effects have been found on the use of cannabis and the clinical effects related to the presence of these receptors.

Cardiovascular effects

These include the following:

Respiratory effects

Transient bronchodilatation may occur after an acute exposure. With chronic heavy smoking, users experience increased cough, sputum production, and wheezing. These complaints are augmented by concurrent tobacco use. One study cites that the rate of decline of respiratory function in an 8-year period was greater among marijuana smokers than among tobacco smokers.

Aside from nicotine, marijuana cigarettes contain some of the same components as tobacco smoke, including bronchial irritants, tumor initiators (mutagens), and tumor promoters. The amount of tar in a marijuana cigarette is 3 times the amount in a tobacco cigarette when smoked, with one-third greater deposition in the respiratory tract.

Chronic cannabis use is associated with bronchitis, squamous metaplasia of the tracheobronchial epithelium, and emphysema. These problems have been reported more frequently in cannabis-only users than in tobacco-only users.

Several case reports strongly suggest a link between cannabis smoking and cancer of the aerodigestive system, including the oropharynx and tongue, nasal and sinus epithelium, and larynx.

Most illegally obtained marijuana is contaminated with Aspergillus species, which can cause invasive pulmonary aspergillosis in immunocompromised users.

Reproductive effects

These include the following:

Psychosis association

Large doses of THC may produce confusion, amnesia, delusions, hallucinations, anxiety, and agitation. Most episodes remit rapidly.

A clear relationship exists between long-term cannabis use and mental health problems, however, it is unclear whether the relationship is causative. [6]  Substance-abusing adolescents commonly suffer one or more comorbid health or behavioral problems. Several studies have demonstrated marijuana abuse to coexist with attention deficit hyperactivity disorder, other learning disabilities, depression, and anxiety. Cohort and well-designed cross-sectional studies suggest a modest association between early, regular, or heavy cannabis use and depression.[7]

An association exists between cannabis use and schizophrenia. A prospective study of 50,000 Swedish conscripts found a dose-response relationship between the frequency of cannabis use by age 18 and the risk of a diagnosis of schizophrenia over the subsequent 15 years.[8] Five prospective studies with well-defined samples looked at cannabis use and psychosis and concluded an overall 2-fold increase in the relative risk for developing schizophrenia. Yet, cannabis use appears to be neither necessary nor sufficient to cause schizophrenia. Among people who already have schizophrenia, cannabis use is predicted to worsen psychotic symptoms. Strains of cannabis that are high in CBD may be less likely to trigger psychotic symptoms. 

Metabolism and elimination

THC is metabolized via the hepatic cytochrome P450 (CYP) system. THC is metabolized into an active compound, 11-hydroxy-THC (11-OH-THC), which is further metabolized into inactive forms.

The elimination half-life of THC can range from 2-57 hours following intravenous use and inhalation. The half-life of 11-OH-THC, the active metabolite of THC, is 12-36 hours. Intravenous use or inhalation results in 15% excretion in the urine and 25-35% in the feces. Within 5 days, nearly 90% of THC is eliminated from the body.

The duration of acute clinical effects is mediated by drug redistribution into body fat stores rather than metabolism or elimination. 

Tolerance

Repeated use over days to weeks induces considerable tolerance to the behavioral and psychological effects of cannabis. Several studies have noted partial tolerance to its effect on mood, memory, motor coordination, sleep, brain wave activity, blood pressure, temperature, and nausea. The rate of tolerance depends on the dose and frequency of administration. The casual cannabis user experiences more impairment in cognitive and psychomotor function to a particular acute dose than heavier, chronic users. The desired recreational high from cannabis also diminishes with use, prompting many users to escalate the dose.

Pharmacologically, chronic use results in the downregulation of the CB1 receptor in several regions of the rat brain. No correlations have been made in human physiology.

Toxicity

Acute cannabis toxicity results in the following:

Although acute toxicity is benign in the average adult, the same cannot always be said for children. In a systematic review of unintentional cannabis ingestion in children under 12 years of age, the most common presenting signs and findings were lethargy, hypotonia, hypoventilation, tachycardia, ataxia, and mydriasis.  Vomiting and seizures have also been reported, as well as paradoxical hyperactivity and irritability. Treatment is largely supportive, including intubation in some instances. Having a clinical suspicion for cannabis toxicity is important as these patients may otherwise undergo lengthy and invasive evaluations for their symptoms.[9]  

Unintentional ingestion in children has been on the rise with the increase in availability afforded by state de-criminalization. A majority of these cases are from unintentional ingestion of edibles, many of which have colorful packaging and are made to look like cookies and candies. Nationwide, children's exposure to cannabis products rose 148% from 2006 to 2013, and in states allowing medical cannabis, that figure increased by 610%

Adverse reactions

Chronic users may experience paranoia, panic disorder, fear, or dysphoria. Transient psychotic episodes may also occur with cannabis use. These psychiatric effects may be less likely to occur with strains that contain higher concentrations of CBD. 

Ventricular tachycardia is also reported in association with use of this drug, but is unclear whether the association is causative. 

Dependence and withdrawal

Nearly 7-10% of regular users become behaviorally and physically dependent on cannabis. Furthermore, early onset of use and daily/weekly use correlates with future dependence. According to the National Institute on Drug Abuse (NIDA), 100,000 people are treated annually for primary (may be self-perceived) marijuana abuse.[10]

Animal studies demonstrate withdrawal symptoms with use of CB1 receptor antagonists. However, in humans, the withdrawal syndrome is not well characterized. Classic manifestations—which may develop upon withdrawal after as little as 1 week of daily use—include the following[11] :

Epidemiology

Frequency

United States

Marijuana became the major drug of abuse in the 1960s. Its use peaked in the late 1970s. According to the NIDA-funded Monitoring the Future survey, the peak year of use occurred in 1979, with 60.4% of 12th-grade students having used cannabis in their lifetimes, 50.8% in the preceding year, and more than 10.3% on a daily basis. Cannabis use began a continuous decline, with the lowest use occurring in 1992. At that time, 32.6% of 12th-grade students reported ever using cannabis, 21.9% reported use in the preceding year, and 1.9% reported using on a daily basis. The decline in use was attributed to perceived risk and to personal disapproval of drugs.

From 1992-1997, marijuana use increased dramatically and then plateaued in the last 2 years. In 1999, 22% of 8th-grade students and 49.7% of 12th-grade students reported ever using cannabis. Daily use was 1.4% and 6%, respectively.[12]  

Since the turn of the 21st century, marijuana use by middle and high school students has fluctuated, but it has held steady in recent years. In 2014, 15.6% of 8th-grade students and 44.4% of 12th-grade students reported ever using cannabis, and daily use was 1.0% and 5.8%, respectively.[12]

The Drug Abuse Warning Network (DAWN) reported 21% increase from 2009 to 2011 in medical emergencies possibly related to marijuana use. DAWN estimated that in 2011, nearly 456,000 drug-related emergency department (ED) visits in which marijuana use was mentioned in the medical record occurred in the United States; however, mentions of marijuana in medical records do not necessarily indicate that these emergencies were directly related to marijuana intoxication. Marijuana accounted for 146.2 visits per 100,000 population.[13, 14]  The increase in ED visits may be due to an increase in the use of marijuana, an increase in the potency of marijuana (ie, amount of THC it contains), or to some other factors

International

The United Nations Office on Drugs and Crime estimates that in 2012, 2.7-4.9% of the world's population aged 15-64 years used cannabis, corresponding to 125 to 227 million people. European monitoring noted in a 2013 report anywhere from 0.8- 40% fo 15-24 years olds having a lifetime use.[15]  Prevalence rates were considerably higher than the global average in West and Central Africa, North America, Oceania and, to a lesser extent, Western and Central Europe.[16]

Mortality/Morbidity

In March of 2014, ingested marijuana was thought to be a chief contributing factor in the death of a 19-year-old man in Colorado. According to the investigation, the marijuana-naive patient bought a cookie containing 65 mg of THC in 6.5 servings. He reportedly ate one serving and, upon not feeling any effects 30-60 minutes later, ate the remainder of the cookie. Over the next 2.5 hours, the patient became erratic, hostile, and jumped from a 4th floor balcony, later dying from his injuries. At autopsy, only cannabinoids were found in his system.[17]

This case report highlights the delay and variability in absorption rates and intoxication with ingesting THC products, taking 1-2 hours to peak vs 5-10 minutes when smoked.

Race-, Sex-, and Age-related Demographics

No differences are reported in patterns of cannabis use according to racial or ethnic background. Little information is available regarding gender differences in cannabis use. Of drug-related emergency department visits in 2011 in which the medical record mentioned marijuana use, about two-thirds of patients were male and 13% were 12-17 years old.

Most cannabis users begin use when younger than 20 years of age, with the peak incidence of onset between 16 and 18 years. Most stop using marijuana by their mid to late 20s. Only about 10% become daily users.

History

Physicians rarely diagnose cannabis dependence because it is deemed an insignificant drug in comparison to others. Nevertheless, physicians should screen for cannabis use because it may be used in conjunction with other drugs. A motivational effect of heavy use is characterized by poor attention and goal-directed thinking or behavior.

The CAGE questions used for alcohol dependence can also be used to screen for marijuana use. The acronym CAGE stands for the main words of the four questions: cut, annoyed, guilty, and eye opener. Two or more positive responses to the following CAGE questions suggests dependence:

A syndrome of cyclic vomiting, termed cannabinoid hyperemesis syndrome, has been described in association with heavy, long-term use of marijuana. Patients describe severe abdominal pain and vomiting that is relieved by taking hot showers or baths. The syndrome usually resolves within days of stopping marijuana use. A study from Colorado reported that the frequency of cannabinoid hyperemesis syndrome nearly doubled after the legalization of recreational marijuana in that state.[18]

Physical

Marijuana can produce a wide range of effects, including the following:

Less objective findings include the following:

Laboratory Studies

Urine immunoassays are used to detect a conjugated delta-9-tetrahydrocannanbinol (THC) metabolite, 11-nor-delta-9-THC carboxylic acid. Features of the test results are as follows[19] :

False-positive results can occur with ibuprofen, naproxen, dronabinol, efavirenz, and hemp seed oil. False-positive results are unlikely to result from use of health food store hemp products or from second-hand smoke inhalation, unless this exposure occurs in an unventilated space.

Quantitative assays for 11-nor-delta-9-THC carboxylic acid are available in most laboratories, but the assay must be specifically requested. Blood tests can also be used to detect THC; however, the levels correlate poorly with the clinical effects.

Hair sampling tests have become available using gas chromatography and mass spectrometry assays and can test for multiple cannabinoids, including THC, THC-OH, THC-COOH, cannabinol and CBD. Cannabinoids enter the hair through capillaries and sweat and can be detected up to 3 months after exposure. However, detection depends on heaviness of use and potency of marijuana consumed.  For heavy, near daily smokers, THC was detected in hair with a sensitivity of 0.77 but this number falls to 0.55 when looking at all cannabis users.[20]

Emergency Department Care

In all patients, the use and abuse of cannabis should be addressed. The potential negative consequences on the patient’s professional and social life should be stressed. Speaking with the patient with empathy and without passing judgment is especially important.

Treatment depends on the clinical presentation, the age of the patient, and the presence of other legal or illicit substances. Immediate management should be supportive, including cardiovascular and neurological monitoring, and placement in a quiet room.

Gastric decontamination is rarely indicated, but may be considered in children younger than 16 years with a large ingestion less than 2 hours prior to presentation.

Patients who are agitated, with psychosis, or with significant anxiety should be treated with benzodiazepines. Patients with an acute psychotic episode should also undergo substance abuse counseling. Those patients who request counseling should be referred for treatment.

Maladaptive behaviors associated with cannabis are more common in males, younger adolescents, patients in urban settings, patients presenting to emergency departments after midnight or on weekends, and patients with psychiatric comorbidities. These patients should be referred to substance abuse counseling.

Consultations

 

Patients with cannabis dependency should be referred to social services. Treatment programs differ for adolescents and young adults.

Adolescents should be counseled in a family-based approach with a well-defined but flexible intervention. Both outpatient and residential treatment facilities are effective in this age group. Home-based programs are an alternative to those families who do not wish to go to treatment centers.

Adults should be taught coping skills in situations that present a risk of use. In this population, group discussions related to cessation and support groups are more effective than one-on-one interventions.

Patient Education

Educate all patients with cannabis use or abuse about the adverse effects of this drug. Encouraging cessation is equally important.

An effort should be made to educate patients on the adverse effects of cannabis use, which include the following:

For patient education information, see Teen Drug Abuse.

 

Prognosis

THC has a long half-life and widespread neurocognitive effects. However, Hooper et al found that adolescents with cannabis use disorder who were in full remission after successful first treatment (n=33) showed no difference in intellectual, neurocognitive, and academic achievement compared with healthy adolescents (n=43) or controls who had psychiatric disorders without a history of substance use disorder (n=37). These researchers concluded that adolescents with cannabis use disorder may not be vulnerable to THC-related neuropsychological deficits once they achieve remission from all drugs for at least 30 days.[21]

Some evidence suggests that heavy marijuana use during adolescence may lead to increased health problems in later adulthood. These may include both physical disorders (eg, respiratory illness) and mental disorders. For example, Meier et al reported that people who started smoking marijuana heavily in their teens and had an ongoing cannabis use disorder lost an average of 8 IQ points between ages 13 and 38, and that those who quit marijuana as adults did not fully recover those losses.[22]

On the other hand, the Pittsburgh Youth Study, which  tracked 408 boys  (54% black, 42% white) from adolescence into their mid-30s found no differences in any of the mental or physical health outcomes measured, regardless of the amount or frequency of marijuana used during adolescence. The mental health outcomes included anxiety and mood and psychotic disorders. The physical health outcomes included asthma, allergies, headaches, high blood pressure, limitations in physical activities, physical injuries, and concussions.[23, 24]

These researchers hypothesized that the overall pattern of use between adolescence and adulthood, which their study focused on, may be a less important than other factors (eg, cumulative tetrahydrocannabinol exposure, age of initiation of use, or use at a particular age) for predicting negative health outcomes.[23, 24]

 

Author

Linda Russo, MD, Attending Physician, Department of Emergency Medicine, Kings County Hospital Center, State University of New York Downstate Medical Center

Disclosure: Nothing to disclose.

Coauthor(s)

Sage W Wiener, MD, Assistant Professor, Department of Emergency Medicine, State University of New York Downstate Medical Center; Director of Medical Toxicology, Department of Emergency Medicine, Kings County Hospital Center

Disclosure: Nothing to disclose.

Specialty Editors

Francisco Talavera, PharmD, PhD, Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Duane C Caneva, MD, MSc, Senior Medical Advisor to Customs and Border Protection, Department of Homeland Security (DHS) Office of Health Affairs; Federal Co-Chair, Health, Medical, Responder Safety Subgroup, Interagency Board (IAB)

Disclosure: Nothing to disclose.

Additional Contributors

Ani Aydin, MD, Resident Physician, Department of Emergency Medicine, Bellevue Hospital/New York University Medical Center

Disclosure: Nothing to disclose.

Jessica A Fulton, DO, Assistant Professor of Emergency Medicine, Assistant Residency Director, New York University and Bellevue Hospital Center; Medical Director of Chemical Biological Radiological Nuclear Explosives (CBRNE) Academy, Bellevue Hospital Center and New York City Department of Health and Mental Hygiene

Disclosure: Nothing to disclose.

Suzanne White, MD, Medical Director, Regional Poison Control Center at Children's Hospital, Program Director of Medical Toxicology, Associate Professor, Departments of Emergency Medicine and Pediatrics, Wayne State University School of Medicine

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous authors, Gregory R Bell, MD, and Alan H Hall, MD, to the development and writing of this article.

References

  1. Lynskey MT, Heath AC, Bucholz KK, Slutske WS, Madden PA, Nelson EC, et al. Escalation of drug use in early-onset cannabis users vs co-twin controls. JAMA. 2003 Jan 22-29. 289(4):427-33. [View Abstract]
  2. Tarter RE, Kirisci L, Mezzich A, Ridenour T, Fishbein D, Horner M, et al. Does the "gateway" sequence increase prediction of cannabis use disorder development beyond deviant socialization? Implications for prevention practice and policy. Drug Alcohol Depend. 2012 Jun. 123 Suppl 1:S72-8. [View Abstract]
  3. Wells DL, Ott CA. The "new" marijuana. Ann Pharmacother. 2011 Mar. 45(3):414-7. [View Abstract]
  4. M.A. Costa, B.M. Fonseca, F. Marques, N.A. Teixeira, G. Correia-da-Silva. The psychoactive compound of Cannabis sativa, Δ9-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover. Toxicology. 6 August 2015. 33:94-103. [View Abstract]
  5. Torri D. Metz, Elaine H. Stickrath. Marijuana use in pregnancy and lactation: a review of the evidence. American Journal of Obstetrics and Gynecology. December 2015. 213:761-778. [View Abstract]
  6. Kuepper R, van Os J, Lieb R, Wittchen HU, Höfler M, Henquet C. Continued cannabis use and risk of incidence and persistence of psychotic symptoms: 10 year follow-up cohort study. BMJ. 2011 Mar 1. 342:d738. [View Abstract]
  7. Degenhardt L, Hall W, Lynskey M. Exploring the association between cannabis use and depression. Addiction. 2003 Nov. 98(11):1493-504. [View Abstract]
  8. Zammit S, Allebeck P, Andreasson S, Lundberg I, Lewis G. Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ. 2002 Nov 23. 325 (7374):1199. [View Abstract]
  9. Richards JR, Smith NE, Moulin AK. Unintentional Cannabis Ingestion in Children: A Systematic Review. J Pediatr. 2017 Nov. 190:142-152. [View Abstract]
  10. National Institute on Drug Abuse, National Institutes of Health, Centers for Substance Abuse Prevention and Treatment. National Conference on Marijuana Use: Prevention, VA. Treatment and Research. NIH publication. 1995: Arlington. 38-49:no 96-4106.
  11. Smith NT. A review of the published literature into cannabis withdrawal symptoms in human users. Addiction. 2002 Jun. 97(6):621-32. [View Abstract]
  12. Marijuana. National Institute on Drug Abuse. Available at http://www.drugabuse.gov/drugs-abuse/marijuana. March 2014; Accessed: August 11, 2015.
  13. What is the scope of marijuana use in the United States?. National Institute on Drug Abuse. Available at http://www.drugabuse.gov/publications/research-reports/marijuana/what-scope-marijuana-use-in-united-states. June 2015; Accessed: August 11, 2015.
  14. Highlights of the 2011 Drug Abuse Warning Network (DAWN) Findings on Drug-Related Emergency Department Visits. The DAWN Report. Available at http://www.samhsa.gov/data/sites/default/files/DAWN127/DAWN127/sr127-DAWN-highlights.htm. February 22, 2013; Accessed: August 11, 2015.
  15. Eurosurveillance Editorial Team. European Drug Report 2013: trends and developments. Eurosurveillance, The European Monitoring Centre for Drugs and Drug Addiction. 30 May 2013. Available at http://www.emcdda.europa.eu/publications/edr/trends-developments/2013_en
  16. UNODC. World Drug Report 2014: Cannabis. United Nations Office on Drugs and Crime. Available at http://www.unodc.org/wdr2014/en/cannabis.html. June 26, 2014; Accessed: August 11, 2015.
  17. Hancock-Allen JB, Barker L, VanDyke M, Holmes DB. Notes from the Field: Death Following Ingestion of an Edible Marijuana Product--Colorado, March 2014. MMWR Morb Mortal Wkly Rep. 2015 Jul 24. 64 (28):771-2. [View Abstract]
  18. Kim HS, Anderson JD, Saghafi O, Heard KJ, Monte AA. Cyclic vomiting presentations following marijuana liberalization in Colorado. Acad Emerg Med. 2015 Jun. 22 (6):694-9. [View Abstract]
  19. Huestis MA, Mitchell JM, Cone EJ. Detection times of marijuana metabolites in urine by immunoassay and GC-MS. J Anal Toxicol. 1995 Oct. 19(6):443-9. [View Abstract]
  20. Taylor, M., Lees, R., Henderson, G., et al. Comparison of cannabinoids in hair with self-reported cannabis consumption in heavy, light and non-cannabis users. Drug and Alcohol Review. 14 June 2016. Epub ahead of print:[View Abstract]
  21. Hooper SR, Woolley D, De Bellis MD. Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder. Psychopharmacology (Berl). 2014 Apr. 231 (8):1467-77. [View Abstract]
  22. Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A. 2012 Oct 2. 109 (40):E2657-64. [View Abstract]
  23. Bechtold J, Simpson T, White HR, Pardini D. Chronic Adolescent Marijuana Use as a Risk Factor for Physical and Mental Health Problems in Young Adult Men. Psychol Addict Behav. 2015 Aug 3. [View Abstract]
  24. Brooks M. Teen Marijuana Use Not Harmful?. Medscape Medical News. Available at http://www.medscape.com/viewarticle/849337. August 11, 2015; Accessed: August 11, 2015.
  25. Fitzgerald KT, Bronstein AC, Newquist KL. Marijuana poisoning. Top Companion Anim Med. 2013 Feb. 28(1):8-12. [View Abstract]
  26. Wiegand TJ, Wax PM, Schwartz T, Finkelstein Y, Gorodetsky R, Brent J. The Toxicology Investigators Consortium Case Registry--the 2011 experience. J Med Toxicol. 2012 Dec. 8(4):360-77. [View Abstract]

Flowering top of cannabis plant.

Flowering top of cannabis plant.